-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdddqn.py
332 lines (292 loc) · 13.9 KB
/
dddqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python
from __future__ import print_function, division
import os
import random
import csv
import tensorflow as tf
import tflearn
import numpy as np
from envmaker import make_environment
from experiencebuffer import ExperienceBuffer
from dddqn_args import F
def get_num_actions():
env = make_environment(F.game, F.height, F.width, F.num_channels)
return env.get_num_actions()
def get_flat_states(state):
np_state = np.array(state)
sh = np_state.shape
# Flatten the states and normalize pixels
state = np.reshape(np_state, (sh[0], sh[1]*sh[2]*sh[3]))/255.0
return state
def static_vars(**kwargs):
def decorate(func):
for k in kwargs:
setattr(func, k, kwargs[k])
return func
return decorate
@static_vars(max_reward=0.0)
def adjust_reward(reward):
if F.reward_adjustment_method == "clip":
adjusted_reward = np.clip(reward, -1.0, 1.0)
elif F.reward_adjustment_method == "scale":
adjust_reward.max_reward = max(reward, adjust_reward.max_reward)
if adjust_reward.max_reward == 0.0:
upper_clip = 1.0
else:
upper_clip = reward/adjust_reward.max_reward
adjusted_reward = np.clip(reward, -1.0, upper_clip)
elif F.reward_adjustment_method == "none":
adjusted_reward = reward
return adjusted_reward
def reset_env(env):
noops = random.randrange(F.num_noops_max)
state = env.reset()
for _ in range(noops):
action = random.randrange(env.get_num_actions())
state, _, _, _ = env.step(action)
return state
def get_network_ops(nactions):
# Environments states should have the shape of `reshaped_state`,
# we then transpose it to have the shape of `inputs`. Note that
# the network accepts flattened states which are initially in
# in the shape of `reshaped_state`.
# shape of reshaped_state = [batch, channel, height, width]
# shape of inputs = [batch, height, width, channel]
flat_state = tf.placeholder(tf.float32, [None, F.num_channels * F.height * F.width])
reshaped_state = tf.reshape(flat_state, shape=[-1, F.num_channels, F.height, F.width])
inputs = tf.transpose(reshaped_state, [0, 2, 3, 1])
net = tflearn.conv_2d(inputs, 32, 8, strides=4, padding='valid', activation='relu')
net = tflearn.conv_2d(net, 64, 4, strides=2, padding='valid', activation='relu')
net = tflearn.conv_2d(net, 64, 3, strides=1, padding='valid', activation='relu')
advantage_net = tflearn.fully_connected(net, 512, activation='relu')
value_net = tflearn.fully_connected(net, 512, activation='relu')
advantage = tflearn.fully_connected(advantage_net, nactions)
value = tflearn.fully_connected(value_net, 1)
# See Eq. (9) in https://arxiv.org/pdf/1511.06581.pdf
q_values = value + tf.sub(advantage,
tf.reduce_mean(advantage, reduction_indices=1, keep_dims=True))
return flat_state, q_values
def get_graph_ops(nactions):
current_state, online_q_values = get_network_ops(nactions)
online_params = tf.trainable_variables()
next_state, target_q_values = get_network_ops(nactions)
target_params = tf.trainable_variables()[len(online_params):]
# Tau is the smoothness factor.
update_target_params_smooth = \
[target_params[i].assign(F.tau * target_params[i] \
+ (1-F.tau) * online_params[i])
for i in range(len(target_params))]
update_target_params = \
[target_params[i].assign(online_params[i])
for i in range(len(target_params))]
predict_action = tf.argmax(online_q_values, 1)
target = tf.placeholder(shape=[None], dtype=tf.float32)
action = tf.placeholder(shape=[None], dtype=tf.int32)
onehot_action = tf.one_hot(action, nactions, dtype=tf.float32)
acted = tf.reduce_sum(tf.mul(online_q_values, onehot_action), reduction_indices=1)
td_error = target - acted
clipped_error = tf.select(tf.abs(td_error) < 1.0,
0.5 * tf.square(td_error), tf.abs(td_error) - 0.5)
loss = tf.reduce_mean(clipped_error)
optimizers = {
'adam': tf.train.AdamOptimizer(learning_rate=F.alpha),
'rmsprop': tf.train.RMSPropOptimizer(learning_rate=F.alpha),
'adadelta': tf.train.AdadeltaOptimizer(learning_rate=F.alpha),
'adagrad': tf.train.AdadeltaOptimizer(learning_rate=F.alpha),
'gradientdescent': tf.train.GradientDescentOptimizer(learning_rate=F.alpha)
}
trainer = optimizers[F.trainer]
update_online_params = trainer.minimize(loss, var_list=online_params)
ops = {'current_state': current_state,
'online_q_values': online_q_values,
'predict_action': predict_action,
'target': target,
'action': action,
'update_online_params': update_online_params,
'next_state': next_state,
'target_q_values': target_q_values,
'update_target_params_smooth': update_target_params_smooth,
'update_target_params': update_target_params}
return ops
def get_summary_ops():
summary_tags = ['Validation Avrg Reward', 'Validation Avrg Max Q',
'Training Avrg Reward', 'Training Avrg Max Q',
'Epsilon']
summaries = {}
summary_placeholders = {}
for tag in summary_tags:
summary_placeholders[tag] = tf.placeholder(shape=(), dtype=tf.float32)
summaries[tag] = tf.scalar_summary(tag, summary_placeholders[tag])
return summary_tags, summary_placeholders, summaries
def validate(session, graph_ops, env, validation_states):
op_current_state = graph_ops['current_state']
op_online_q_values = graph_ops['online_q_values']
state = env.reset()
ep_reward = 0.0
ep_max_q = 0.0
avrg_reward = 0.0
avrg_max_q = 0.0
ep_counter = 0
ep_step = 0
for _ in range(F.num_validation_steps):
ep_step += 1
online_q_values = session.run(op_online_q_values,
feed_dict={op_current_state: get_flat_states([state])})
action = np.argmax(online_q_values)
if random.random() < F.validation_epsilon:
action = random.randrange(nactions)
state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
ep_counter += 1
ep_step = 0
state = env.reset()
avrg_reward += (ep_reward - avrg_reward) / ep_counter
ep_reward = 0.0
ep_max_q = 0.0
if validation_states is not None:
qvalues = session.run(op_online_q_values,
feed_dict={op_current_state: get_flat_states(validation_states)})
maxqs = np.max(qvalues, axis=1)
assert maxqs.shape[0] == qvalues.shape[0]
avrg_max_q = np.mean(maxqs)
return avrg_reward, avrg_max_q
def train(session, graph_ops, nactions, saver):
if F.checkpoint_path:
print('Loading pre-trained model', F.checkpoint_path)
saver.restore(session, F.checkpoint_path)
session.run(tf.initialize_all_variables())
summary_save_path = F.summary_dir + "/" + F.experiment
writer = tf.train.SummaryWriter(summary_save_path, session.graph)
if not os.path.exists(F.checkpoint_dir):
os.makedirs(F.checkpoint_dir)
csv_file = open(summary_save_path + "/plot.csv", "w")
csv_writer = csv.writer(csv_file)
csv_writer.writerow(("epoch", "step", "episode", "validation_reward",
"validation_max_q", "train_reward", "train_max_q", "epsilon"))
csv_file.flush()
op_current_state = graph_ops['current_state']
op_online_q_values = graph_ops['online_q_values']
op_predict_action = graph_ops['predict_action']
op_target = graph_ops['target']
op_action = graph_ops['action']
op_update_online_params = graph_ops['update_online_params']
op_next_state = graph_ops['next_state']
op_target_q_values = graph_ops['target_q_values']
op_update_target_params_smooth = graph_ops['update_target_params_smooth']
op_update_target_params = graph_ops['update_target_params']
session.run(op_update_target_params)
summary_tags, op_summary_placeholders, op_summaries = get_summary_ops()
training_env = make_environment(F.game, F.width, F.height, F.num_channels)
validation_env = make_environment(F.game, F.width, F.height, F.num_channels)
drop_epsilon = (F.start_epsilon - F.final_epsilon) / F.epsilon_annealing_steps
epsilon = F.start_epsilon
experience_buffer = ExperienceBuffer(F.experience_buffer_size)
validation_states = None
total_step = 0
current_state = reset_env(training_env)
for epoch in range(F.num_epochs+1):
ep_reward = 0.0
ep_max_q = 0.0
training_avrg_reward = 0.0
training_avrg_max_q = 0.0
ep_counter = 0
ep_step = 0
for _ in range(F.num_training_steps):
total_step += 1
ep_step += 1
online_q_values = session.run(op_online_q_values,
feed_dict={op_current_state: get_flat_states([current_state])})
training_avrg_max_q += np.max(online_q_values)
action = np.argmax(online_q_values)
if random.random() < epsilon or total_step <= F.num_random_steps:
action = random.randrange(nactions)
next_state, reward, done, _ = training_env.step(action)
adjusted_reward = adjust_reward(reward)
experience_buffer.append(
(current_state, action, adjusted_reward, next_state, done))
if total_step > F.num_random_steps:
if validation_states is None:
validation_states, _, _, _, _ = experience_buffer.sample(F.batch_size)
if epsilon > F.final_epsilon:
epsilon -= drop_epsilon
if total_step % F.target_update_frequency == 0:
session.run(op_update_target_params_smooth)
if total_step % F.online_update_frequency == 0:
batch = experience_buffer.sample(F.batch_size)
prestates, action_batch, reward_batch, poststates, done_batch = batch
prestate_batch = get_flat_states(prestates)
poststate_batch = get_flat_states(poststates)
actions = session.run(op_predict_action,
feed_dict={op_current_state: poststate_batch})
target_q_values = session.run(op_target_q_values,
feed_dict={op_next_state: poststate_batch})
double_q_values = target_q_values[range(F.batch_size), actions]
not_done = -(done_batch - 1)
target = reward_batch + (F.gamma * double_q_values * not_done)
session.run(op_update_online_params,
feed_dict={op_current_state: prestate_batch,
op_target: target,
op_action: action_batch})
current_state = next_state
ep_reward += reward
ep_max_q += (np.max(online_q_values) - ep_max_q) / ep_step
if done:
ep_counter += 1
ep_step = 0
current_state = reset_env(training_env)
training_avrg_reward += (ep_reward - training_avrg_reward) / ep_counter
ep_reward = 0.0
ep_max_q = 0.0
training_avrg_max_q /= float(F.num_training_steps)
validation_avrg_reward, validation_avrg_max_q = validate(session, graph_ops, validation_env, validation_states)
stats = [validation_avrg_reward, validation_avrg_max_q,
training_avrg_reward, training_avrg_max_q, epsilon]
tag_dict = {}
for index, tag in enumerate(summary_tags):
tag_dict[tag] = stats[index]
summary_str_lists = session.run([op_summaries[tag] for tag in tag_dict.keys()],
feed_dict={op_summary_placeholders[tag]: value for tag, value in tag_dict.items()})
for summary_str in summary_str_lists:
writer.add_summary(summary_str, ep_counter)
fmt = "EPOCH {:3d} | STEP {:8d} | EPISODE {:6d} | AVRG_REWARD {:.2f} | " + \
"AVRG_MAX_Q {:.4f} | EPSILON {:.4f}"
print(fmt.format(epoch, total_step, ep_counter, stats[0], stats[1], stats[4]))
csv_writer.writerow((epoch, total_step, ep_counter, stats[0], stats[1],
stats[2], stats[3], stats[4]))
csv_file.flush()
if epoch % F.checkpoint_interval == 0:
saver.save(session, F.checkpoint_dir + "/"
+ F.experiment + ".ckpt", global_step=epoch)
csv_file.close()
def test(session, graph_ops, naction, saver):
print('Loading pre-trained model', F.checkpoint_path)
saver.restore(session, F.checkpoint_path)
env = make_environment(F.game, F.width, F.height, F.num_channels)
env.monitor_start(F.eval_dir)
op_current_state = graph_ops['current_state']
op_online_q_values = graph_ops['online_q_values']
for _ in range(F.num_testing_episodes):
state = env.reset()
ep_reward = 0.0
done = False
while not done:
env.render()
online_q_values = session.run(op_online_q_values,
feed_dict={op_current_state: get_flat_states([state])})
action = np.argmax(online_q_values)
if random.random() < F.test_epsilon:
action = random.randrange(nactions)
state, reward, done, _ = env.step(action)
ep_reward += reward
print("EPISODE REWARD:", ep_reward)
env.monitor_close()
if __name__ == "__main__":
with tf.Session() as session:
nactions = get_num_actions()
graph_ops = get_graph_ops(nactions)
saver = tf.train.Saver()
if F.subcommand == "test":
test(session, graph_ops, nactions, saver)
elif F.subcommand == "train":
train(session, graph_ops, nactions, saver)