-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.go
58 lines (43 loc) · 1.33 KB
/
loss.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
package nn
import (
"go4ml.xyz/base/fu"
"go4ml.xyz/nn/mx"
)
type L0Loss struct{}
func (L0Loss) Loss(out *mx.Symbol) *mx.Symbol {
return out
}
type L1Loss struct{ Num int }
func (loss L1Loss) Loss(out *mx.Symbol) *mx.Symbol {
n := fu.Ifei(loss.Num == 0, 1, loss.Num)
label := mx.Var("_label", mx.Dim(0, n))
return mx.Mean(mx.Abs(mx.Sub(out, label)))
}
type L2Loss struct{ Num int }
func (loss L2Loss) Loss(out *mx.Symbol) *mx.Symbol {
n := fu.Ifei(loss.Num == 0, 1, loss.Num)
label := mx.Var("_label", mx.Dim(0, n))
return mx.Square(mx.Sub(out, label))
}
type SoftmaxCrossEntropyLoss struct{}
func (SoftmaxCrossEntropyLoss) Loss(out *mx.Symbol) *mx.Symbol {
label := mx.Var("_label", mx.Dim(0, 1))
return mx.SoftmaxCrossEntropy(out, label)
}
type CrossEntropyLoss struct{ Num int }
func (loss CrossEntropyLoss) Loss(out *mx.Symbol) *mx.Symbol {
n := fu.Ifei(loss.Num == 0, 1, loss.Num)
label := mx.Var("_label", mx.Dim(0, n))
a := mx.Log(mx.Add(mx.Pick(out, label), 1e-12))
return mx.Sum(mx.Mul(a, -1), -1)
}
type LcosLoss struct{ Num int }
func (loss LcosLoss) Loss(out *mx.Symbol) *mx.Symbol {
n := fu.Ifei(loss.Num == 0, 1, loss.Num)
label := mx.Var("_label", mx.Dim(0, n))
return mx.LogCosh(mx.Sub(out, label))
}
type LossFunc func(*mx.Symbol) *mx.Symbol
func (loss LossFunc) Loss(out *mx.Symbol) *mx.Symbol {
return loss(out)
}