-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChat.py
160 lines (149 loc) · 5.25 KB
/
Chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import json
from dotenv import load_dotenv
# Add OpenAI import
from openai import AzureOpenAI
from langchain_community.document_loaders import TextLoader
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
from langchain.chains import RetrievalQA
from langchain_core.output_parsers import StrOutputParser
from langchain.vectorstores.azuresearch import AzureSearch
from langchain.text_splitter import CharacterTextSplitter
from azure.search.documents.indexes.models import (
FreshnessScoringFunction,
FreshnessScoringParameters,
ScoringProfile,
SearchableField,
SearchField,
SearchFieldDataType,
SimpleField,
TextWeights,
)
from tqdm import tqdm
import os
import pandas as pd
import nest_asyncio
nest_asyncio.apply()
import warnings
warnings.filterwarnings("ignore")
from azure.identity import DefaultAzureCredential
# Get configuration settings
load_dotenv()
azure_oai_endpoint = os.getenv("AZURE_OAI_ENDPOINT")
azure_oai_key = os.getenv("AZURE_OAI_KEY")
azure_openai_api_key = os.getenv("AZURE_OAI_KEY")
azure_oai_deployment = os.getenv("AZURE_OAI_DEPLOYMENT")
azure_oai_text_deployment = os.getenv("AZURE_OAI_TEXT_DEPLOYMENT")
azure_search_endpoint = os.getenv("AZURE_SEARCH_ENDPOINT")
azure_search_key = os.getenv("AZURE_SEARCH_KEY")
azure_search_index = os.getenv("AZURE_SEARCH_INDEX")
credential = DefaultAzureCredential()
sc_name = "scoring_profile"
def embedding_func():
embeddings = AzureOpenAIEmbeddings(
azure_deployment=azure_oai_text_deployment,
api_key=azure_openai_api_key,
azure_endpoint=azure_oai_endpoint
)
return embeddings
def fields_definition(embeddings):
fields = [
SimpleField(
name="id",
type=SearchFieldDataType.String,
key=True,
filterable=True,
),
SearchableField(
name="content",
type=SearchFieldDataType.String,
searchable=True,
),
SearchField(
name="content_vector",
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=len(embeddings.embed_query("Text")),
vector_search_profile_name="myHnswProfile",
),
SearchableField(
name="metadata",
type=SearchFieldDataType.String,
searchable=True,
),
# Additional field for filtering on document source
SimpleField(
name="source",
type=SearchFieldDataType.String,
filterable=True,
),
# Additional data field for last doc update
SimpleField(
name="last_update",
type=SearchFieldDataType.DateTimeOffset,
searchable=True,
filterable=True,
),
]
# Adding a custom scoring profile with a freshness function
sc = ScoringProfile(
name=sc_name,
text_weights=TextWeights(weights={"content": 5}),
function_aggregation="sum",
functions=[
FreshnessScoringFunction(
field_name="last_update",
boost=100,
parameters=FreshnessScoringParameters(boosting_duration="P2D"),
interpolation="linear",
)
],
)
return fields, sc
def create_vector_store(embeddings, fields, sc):
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=azure_search_endpoint,
azure_search_key=azure_search_key,
index_name=azure_search_index,
embedding_function=embeddings.embed_query,
fields=fields,
scoring_profiles=[sc],
default_scoring_profile=sc_name,
)
return vector_store
def create_llm(vector_store):
azureai_retriever = vector_store.as_retriever(fetch_k=3, fetch_metadata=True)
# azureai_retriever.invoke("How is Windows OEM revenue growth?")
llm = AzureChatOpenAI(azure_endpoint=azure_oai_endpoint,
api_key=azure_openai_api_key,
api_version="2023-09-01-preview",
azure_deployment=azure_oai_deployment,
temperature=0.1)
chat = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=azureai_retriever,
metadata={"application_type": "question_answering"},
return_source_documents=True,
)
return chat
if __name__ == "__main__":
embeddings = embedding_func()
# embedding_function=embeddings.embed_query
fields, sc = fields_definition(embeddings)
vector_store = create_vector_store(embeddings, fields, sc)
chat = create_llm(vector_store)
query = "who is gregor samsa"
# query = "who is General Manager, Investor Relations"
# query = "Activision Blizzard"
try:
response = chat.invoke({"query": query})
# Accessing the list of documents
documents = response['source_documents']
# Extracting metadata from each document
response_metadata = set()
for document in documents:
response_metadata.add(document.metadata['source'])
print(f'Query: {response["query"]} : , Response: {response["result"]}, Source Documents: {response_metadata}')
except Exception as e:
print(f"An error occurred: {e}")