-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
34 lines (23 loc) · 1.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import argparse
from models.catdog_vgg_selectivenet import CatsvsDogVgg as CatsvsDogSelective
from models.cifar10_vgg_selectivenet import cifar10vgg as cifar10Selective
from models.svhn_vgg_selectivenet import SvhnVgg as SVHNSelective
from selectivnet_utils import *
MODELS = {"cifar_10": cifar10Selective, "catsdogs": CatsvsDogSelective, "SVHN": SVHNSelective}
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='cifar_10')
parser.add_argument('--model_name', type=str, default='test')
parser.add_argument('--baseline', type=str, default='none')
parser.add_argument('--alpha', type=float, default=0.5)
args = parser.parse_args()
model_cls = MODELS[args.dataset]
model_name = args.model_name
baseline_name = args.baseline
coverages = [0.95, 0.9, 0.85, 0.8, 0.75, 0.7]
if baseline_name == "none":
results = train_profile(model_name, cifar10Selective, coverages, alpha=args.alpha)
else:
model_baseline = model_cls(train=to_train("{}.h5".format(baseline_name)),
filename="{}.h5".format(baseline_name),
baseline=True)
results = train_profile(model_name, model_cls, coverages, model_baseline=model_baseline, alpha=args.alpha)