-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack_anything.py
129 lines (101 loc) · 4.82 KB
/
track_anything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gc
import PIL
from tqdm import tqdm
from tools.interact_tools import SamControler
from tracker.base_tracker import BaseTracker
from inpainter.base_inpainter import BaseInpainter
import numpy as np
import argparse
from Tracker import Tracker
import torch
class TrackingAnything():
def __init__(self, sam_checkpoint, xmem_checkpoint, e2fgvi_checkpoint, args):
self.args = args
self.sam_checkpoint = sam_checkpoint
self.xmem_checkpoint = xmem_checkpoint
self.e2fgvi_checkpoint = e2fgvi_checkpoint
self.samcontroler = SamControler(self.sam_checkpoint, args.sam_model_type, args.device)
self.xmem = BaseTracker(self.xmem_checkpoint, device=args.device)
self.baseinpainter = None
# def inference_step(self, first_flag: bool, interact_flag: bool, image: np.ndarray,
# same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# if first_flag:
# mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
# return mask, logit, painted_image
# if interact_flag:
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
# return mask, logit, painted_image
# mask, logit, painted_image = self.xmem.track(image, logit)
# return mask, logit, painted_image
def first_frame_click(self, image: np.ndarray, points: np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# def interact(self, image: np.ndarray, same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
# return mask, logit, painted_image
def generator(self, images: list, template_mask: np.ndarray):
masks = []
logits = []
painted_images = []
for i in tqdm(range(len(images)), desc="Tracking image"):
if i == 0:
mask, logit, painted_image = self.xmem.track(images[i], template_mask)
masks.append(mask)
logits.append(logit)
painted_images.append(painted_image)
else:
mask, logit, painted_image = self.xmem.track(images[i])
masks.append(mask)
logits.append(logit)
painted_images.append(painted_image)
return masks, logits, painted_images
def generator_with_aot(self, images: list, template_mask: np.ndarray):
mask = []
logits = []
painted_images = []
tracker_seg = Tracker()
seg(tracker_seg, images[0], template_mask)
for i in tqdm(range(len(images)), desc="Tracking images"):
if i == 0:
tracker_seg.refined_merged_mask = template_mask
mask.append(tracker_seg.refined_merged_mask)
logits.append(tracker_seg.refined_merged_mask)
else:
pred_mask, painted_image = tracker_seg.track(images[i], update_memory=True)
mask.append(pred_mask)
logits.append(pred_mask)
painted_images.append(painted_image)
torch.cuda.empty_cache()
gc.collect()
return mask, logits, painted_images
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default="cuda:0")
parser.add_argument('--sam_model_type', type=str, default="vit_b")
parser.add_argument('--port', type=int, default=8080, help="only useful when running gradio applications")
parser.add_argument('--debug', action="store_true")
parser.add_argument('--mask_save', default=True)
args = parser.parse_args()
if args.debug:
print(args)
return args
def seg(Tracker_Seg, origin_frame, pred_mask):
frame_idx = 0
Tracker_Seg.add_reference(origin_frame, pred_mask, frame_idx)
return Tracker_Seg
if __name__ == "__main__":
masks = None
logits = None
painted_images = None
images = []
image = np.array(PIL.Image.open('/hhd3/gaoshang/truck.jpg'))
args = parse_augment()
# images.append(np.ones((20,20,3)).astype('uint8'))
# images.append(np.ones((20,20,3)).astype('uint8'))
images.append(image)
images.append(image)
mask = np.zeros_like(image)[:, :, 0]
mask[0, 0] = 1
trackany = TrackingAnything('/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth',
'/ssd1/gaomingqi/checkpoints/XMem-s012.pth', args)
masks, logits, painted_images = trackany.generator(images, mask)