-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmf.py
31 lines (27 loc) · 1.13 KB
/
mf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from torch import nn
class MF(nn.Module):
def __init__(self, config):
super().__init__()
self.user_embedding = nn.Embedding(config['user_pool'], config['latent_dim'])
self.item_embedding = nn.Embedding(config['item_pool'], config['latent_dim'])
self.user_biases = nn.Embedding(config['user_pool'], 1)
self.item_biases = nn.Embedding(config['item_pool'], 1)
def forward(self, users, items):
users_emb, items_emb = self.user_embedding(users), self.item_embedding(items)
biases_u, biases_i = self.user_biases(users).squeeze(), self.item_biases(items).squeeze()
dots = (users_emb * items_emb).sum(1)
res = dots + biases_u + biases_i
return res
@property
def summarize(self):
print("Model summary")
print("="*60)
layers = list(self.children())
total = 0
for layer in layers:
for params in layer.parameters():
if params.requires_grad:
total += params.numel()
print(self)
print("="*60)
print(f"Trainable parameters: {total}")