Submodule | Maintainers | Contact Info |
---|---|---|
dense_image_warp | @WindQAQ | [email protected] |
distance_transform_ops | @mels630 | [email protected] |
distort_image_ops | @WindQAQ | [email protected] |
filters | @Mainak431 | [email protected] |
transform_ops | @mels630 | [email protected] |
translate_ops | @sayoojbk | [email protected] |
Submodule | Image Processing Function | Reference |
---|---|---|
dense_image_warp | dense_image_warp | |
dense_image_warp | interpolate_bilinear | |
distance_transform_ops | euclidean_distance_transform | |
distort_image_ops | adjust_hsv_in_yiq | |
distort_image_ops | random_hsv_in_yiq | |
filters | mean_filter2d | |
filters | median_filter2d | |
transform_ops | angles_to_projective_transforms | |
transform_ops | compose_transforms | |
transform_ops | matrices_to_flat_transforms | |
transform_ops | rotate | |
transform_ops | transform | |
translate_ops | translate | |
translate_ops | translations_to_projective_transforms |
In order to conform with the current API standard, all image ops must:
- Be a standard image processing technique
- Must be impossible to implement in one of the other API standards (Layers, Losses, etc.).
- Add the addon to the
py_library
in this sub-package's BUILD file.
- Simple unittests that demonstrate the image op is behaving as expected.
- When applicable, run all unittests with TensorFlow's
@run_in_graph_and_eager_modes
(for test method) orrun_all_in_graph_and_eager_modes
(for TestCase subclass) decorator. - Add a
py_test
to this sub-package's BUILD file.
- Update the table of contents in this sub-packages's README.