-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathpredict.py
330 lines (278 loc) · 14.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#! /usr/bin/env python
import re
import math
import collections
import numpy as np
import time
import operator
from scipy.io import mmread, mmwrite
from random import randint
from sklearn import cross_validation
from sklearn import linear_model
from sklearn.grid_search import GridSearchCV
from sklearn import preprocessing as pp
from sklearn.svm import SVR
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.decomposition import ProbabilisticPCA, KernelPCA
from sklearn.decomposition import NMF
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression, Ridge, Lasso, ElasticNet
import scipy.stats as stats
from sklearn import tree
from sklearn.feature_selection import f_regression
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc, f1_score
from sklearn.gaussian_process import GaussianProcess
import features
# working directory
dir = '.'
label_index = 770
# load train data
def load_train_fs():
# In the validation process, the training data was randomly shuffled firstly.
# For the prediction process, there is no need to shuffle the dataset.
# Owing to out of memory problem, Gaussian process only use part of training data, the prediction of gaussian process
# may be a little different from the model,which the training data was shuffled.
train_fs = np.genfromtxt(open(dir + '/train_v2.csv','rb'), delimiter=',', skip_header=1)
col_mean = stats.nanmean(train_fs, axis=0)
inds = np.where(np.isnan(train_fs))
train_fs[inds] = np.take(col_mean, inds[1])
train_fs[np.isinf(train_fs)] = 0
return train_fs
# load test data
def load_test_fs():
test_fs = np.genfromtxt(open(dir + '/test_v2.csv','rb'), delimiter=',', skip_header = 1)
col_mean = stats.nanmean(test_fs, axis=0)
inds = np.where(np.isnan(test_fs))
test_fs[inds] = np.take(col_mean, inds[1])
test_fs[np.isinf(test_fs)] = 0
return test_fs
# extract features from test data
def test_type(test_fs):
x_Test = test_fs[:,range(1, label_index)]
return x_Test
# extract features from train data
def train_type(train_fs):
train_x = train_fs[:,range(1, label_index)]
train_y= train_fs[:,-1]
return train_x, train_y
# transform the loss to the binary form
def toLabels(train_y):
labels = np.zeros(len(train_y))
labels[train_y>0] = 1
return labels
# generate the output file based to the predictions
def output_preds(preds):
out_file = dir + '/output.csv'
fs = open(out_file,'w')
fs.write('id,loss\n')
for i in range(len(preds)):
if preds[i] > 100:
preds[i] = 100
elif preds[i] < 0:
preds[i] = 0
strs = str(i+105472) + ',' + str(np.float(preds[i]))
fs.write(strs + '\n');
fs.close()
return
# get the top feature indexes by invoking f_regression
def getTopFeatures(train_x, train_y, n_features=100):
f_val, p_val = f_regression(train_x,train_y)
f_val_dict = {}
p_val_dict = {}
for i in range(len(f_val)):
if math.isnan(f_val[i]):
f_val[i] = 0.0
f_val_dict[i] = f_val[i]
if math.isnan(p_val[i]):
p_val[i] = 0.0
p_val_dict[i] = p_val[i]
sorted_f = sorted(f_val_dict.iteritems(), key=operator.itemgetter(1),reverse=True)
sorted_p = sorted(p_val_dict.iteritems(), key=operator.itemgetter(1),reverse=True)
feature_indexs = []
for i in range(0,n_features):
feature_indexs.append(sorted_f[i][0])
return feature_indexs
# generate the new data, based on which features are generated, and used
def get_data(train_x, feature_indexs, feature_minus_pair_list=[], feature_plus_pair_list=[],
feature_mul_pair_list=[], feature_divide_pair_list = [], feature_pair_sub_mul_list=[],
feature_pair_plus_mul_list = [],feature_pair_sub_divide_list = [], feature_minus2_pair_list = [],feature_mul2_pair_list=[],
feature_sub_square_pair_list=[], feature_square_sub_pair_list=[],feature_square_plus_pair_list=[]):
sub_train_x = train_x[:,feature_indexs]
for i in range(len(feature_minus_pair_list)):
ind_i = feature_minus_pair_list[i][0]
ind_j = feature_minus_pair_list[i][1]
sub_train_x = np.column_stack((sub_train_x, train_x[:,ind_i]-train_x[:,ind_j]))
for i in range(len(feature_plus_pair_list)):
ind_i = feature_plus_pair_list[i][0]
ind_j = feature_plus_pair_list[i][1]
sub_train_x = np.column_stack((sub_train_x, train_x[:,ind_i] + train_x[:,ind_j]))
for i in range(len(feature_mul_pair_list)):
ind_i = feature_mul_pair_list[i][0]
ind_j = feature_mul_pair_list[i][1]
sub_train_x = np.column_stack((sub_train_x, train_x[:,ind_i] * train_x[:,ind_j]))
for i in range(len(feature_divide_pair_list)):
ind_i = feature_divide_pair_list[i][0]
ind_j = feature_divide_pair_list[i][1]
sub_train_x = np.column_stack((sub_train_x, train_x[:,ind_i] / train_x[:,ind_j]))
for i in range(len(feature_pair_sub_mul_list)):
ind_i = feature_pair_sub_mul_list[i][0]
ind_j = feature_pair_sub_mul_list[i][1]
ind_k = feature_pair_sub_mul_list[i][2]
sub_train_x = np.column_stack((sub_train_x, (train_x[:,ind_i]-train_x[:,ind_j]) * train_x[:,ind_k]))
return sub_train_x
# use gbm classifier to predict whether the loan defaults or not
def gbc_classify(train_x, train_y):
feature_indexs = getTopFeatures(train_x, train_y)
sub_x_Train = get_data(train_x, feature_indexs[:16], features.feature_pair_sub_list
,features.feature_pair_plus_list, features.feature_pair_mul_list, features.feature_pair_divide_list[:20],
features.feature_pair_sub_mul_list[:20])
labels = toLabels(train_y)
gbc = GradientBoostingClassifier(n_estimators=3000, max_depth=8)
gbc.fit(sub_x_Train, labels)
return gbc
# use svm to predict the loss, based on the result of gbm classifier
def gbc_svr_predict_part(gbc, train_x, train_y, test_x, feature_pair_sub_list,
feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list,
feature_pair_sub_mul_list, feature_pair_sub_list_sf, feature_pair_plus_list2):
feature_indexs = getTopFeatures(train_x, train_y)
sub_x_Train = get_data(train_x, feature_indexs[:16], feature_pair_sub_list
,feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list[:20], feature_pair_sub_mul_list[:20])
sub_x_Test = get_data(test_x, feature_indexs[:16], feature_pair_sub_list
,feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list[:20], feature_pair_sub_mul_list[:20])
pred_labels = gbc.predict(sub_x_Test)
pred_probs = gbc.predict_proba(sub_x_Test)[:,1]
ind_test = np.where(pred_probs>0.55)[0]
ind_train = np.where(train_y > 0)[0]
ind_train0 = np.where(train_y == 0)[0]
preds_all = np.zeros([len(sub_x_Test)])
flag = (sub_x_Test[:,16] >= 1)
ind_tmp0 = np.where(flag)[0]
ind_tmp = np.where(~flag)[0]
sub_x_Train = get_data(train_x, feature_indexs[:100], feature_pair_sub_list_sf
,feature_pair_plus_list2[:100], feature_pair_mul_list[:40], feature_pair_divide_list, feature_pair_sub_mul_list)
sub_x_Test = get_data(test_x, feature_indexs[:100], feature_pair_sub_list_sf
,feature_pair_plus_list2[:100], feature_pair_mul_list[:40], feature_pair_divide_list, feature_pair_sub_mul_list)
sub_x_Train[:,101] = np.log(1-sub_x_Train[:,101])
sub_x_Test[ind_tmp,101] = np.log(1-sub_x_Test[ind_tmp,101])
scaler = pp.StandardScaler()
scaler.fit(sub_x_Train)
sub_x_Train = scaler.transform(sub_x_Train)
sub_x_Test[ind_tmp] = scaler.transform(sub_x_Test[ind_tmp])
svr = SVR(C=16, kernel='rbf', gamma = 0.000122)
svr.fit(sub_x_Train[ind_train], np.log(train_y[ind_train]))
preds = svr.predict(sub_x_Test[ind_test])
preds_all[ind_test] = np.power(np.e, preds)
preds_all[ind_tmp0] = 0
return preds_all
# use gbm regression to predict the loss, based on the result of gbm classifier
def gbc_gbr_predict_part(gbc, train_x, train_y, test_x, feature_pair_sub_list,
feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list,
feature_pair_sub_mul_list, feature_pair_sub_list2):
feature_indexs = getTopFeatures(train_x, train_y)
sub_x_Train = get_data(train_x, feature_indexs[:16], feature_pair_sub_list
,feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list[:20],feature_pair_sub_mul_list[:20])
sub_x_Test = get_data(test_x, feature_indexs[:16], feature_pair_sub_list
,feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list[:20], feature_pair_sub_mul_list[:20])
pred_labels = gbc.predict(sub_x_Test)
pred_probs = gbc.predict_proba(sub_x_Test)[:,1]
ind_test = np.where(pred_probs>0.55)[0]
ind_train = np.where(train_y > 0)[0]
ind_train0 = np.where(train_y == 0)[0]
preds_all = np.zeros([len(sub_x_Test)])
flag = (sub_x_Test[:,16] >= 1)
ind_tmp0 = np.where(flag)[0]
ind_tmp = np.where(~flag)[0]
sub_x_Train = get_data(train_x, feature_indexs[:16], feature_pair_sub_list2[:70]
,feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list, feature_pair_sub_mul_list)
sub_x_Test = get_data(test_x, feature_indexs[:16], feature_pair_sub_list2[:70]
,feature_pair_plus_list, feature_pair_mul_list, feature_pair_divide_list, feature_pair_sub_mul_list)
scaler = pp.StandardScaler()
scaler.fit(sub_x_Train)
sub_x_Train = scaler.transform(sub_x_Train)
sub_x_Test[ind_tmp] = scaler.transform(sub_x_Test[ind_tmp])
gbr1000 = GradientBoostingRegressor(n_estimators=1300, max_depth=4, subsample=0.5, learning_rate=0.05)
gbr1000.fit(sub_x_Train[ind_train], np.log(train_y[ind_train]))
preds = gbr1000.predict(sub_x_Test[ind_test])
preds_all[ind_test] = np.power(np.e, preds)
preds_all[ind_tmp0] = 0
return preds_all
# predict the loss based on the Gaussian process regressor, which has been trained
def gp_predict(clf, x_Test):
size = len(x_Test)
part_size = 3000
cnt = (size-1) / part_size + 1
preds = []
for i in range(cnt):
if i < cnt - 1:
pred_part = clf.predict(x_Test[i*part_size: (i+1) * part_size])
else:
pred_part = clf.predict(x_Test[i*part_size: size])
preds.extend(pred_part)
return np.power(np.e,preds)
# train the gaussian process regressor
def gbc_gp_predict_part(sub_x_Train, train_y, sub_x_Test_part):
#Owing to out of memory, the model was trained by part of training data
#Attention, this part was trained on the ram of more than 96G
sub_x_Train[:,16] = np.log(1-sub_x_Train[:,16])
scaler = pp.StandardScaler()
scaler.fit(sub_x_Train)
sub_x_Train = scaler.transform(sub_x_Train)
ind_train = np.where(train_y>0)[0]
part_size= int(0.7 * len(ind_train))
gp = GaussianProcess(theta0=1e-3, thetaL=1e-5, thetaU=10, corr= 'absolute_exponential')
gp.fit(sub_x_Train[ind_train[:part_size]], np.log(train_y[ind_train[:part_size]]))
flag = (sub_x_Test_part[:,16] >= 1)
ind_tmp0 = np.where(flag)[0]
ind_tmp = np.where(~flag)[0]
sub_x_Test_part[ind_tmp,16] = np.log(1-sub_x_Test_part[ind_tmp,16])
sub_x_Test_part[ind_tmp] = scaler.transform(sub_x_Test_part[ind_tmp])
gp_preds_tmp = gp_predict(gp, sub_x_Test_part[ind_tmp])
gp_preds = np.zeros(len(sub_x_Test_part))
gp_preds[ind_tmp] = gp_preds_tmp
return gp_preds
# use gbm classifier to predict whether the loan defaults or not, then invoke the function gbc_gp_predict_part
def gbc_gp_predict(train_x, train_y, test_x):
feature_indexs = getTopFeatures(train_x, train_y)
sub_x_Train = get_data(train_x, feature_indexs[:16], features.feature_pair_sub_list
,features.feature_pair_plus_list, features.feature_pair_mul_list, features.feature_pair_divide_list[:20])
sub_x_Test = get_data(test_x, feature_indexs[:16], features.feature_pair_sub_list
,features.feature_pair_plus_list, features.feature_pair_mul_list, features.feature_pair_divide_list[:20])
labels = toLabels(train_y)
gbc = GradientBoostingClassifier(n_estimators=3000, max_depth=9)
gbc.fit(sub_x_Train, labels)
pred_probs = gbc.predict_proba(sub_x_Test)[:,1]
ind_test = np.where(pred_probs>0.55)[0]
gp_preds_part = gbc_gp_predict_part(sub_x_Train, train_y, sub_x_Test[ind_test])
gp_preds = np.zeros(len(test_x))
gp_preds[ind_test] = gp_preds_part
return gp_preds
# invoke the function gbc_svr_predict_part
def gbc_svr_predict(gbc, train_x, train_y, test_x):
svr_preds = gbc_svr_predict_part(gbc, train_x, train_y, test_x, features.feature_pair_sub_list, features.feature_pair_plus_list,
features.feature_pair_mul_list, features.feature_pair_divide_list,
features.feature_pair_sub_mul_list, features.feature_pair_sub_list_sf,
features.feature_pair_plus_list2)
return svr_preds
# invoke the function gbc_gbr_predict_part
def gbc_gbr_predict(gbc, train_x, train_y, test_x):
gbr_preds = gbc_gbr_predict_part(gbc, train_x, train_y, test_x, features.feature_pair_sub_list,
features.feature_pair_plus_list, features.feature_pair_mul_list,
features.feature_pair_divide_list, features.feature_pair_sub_mul_list,
features.feature_pair_sub_list2)
return gbr_preds
# the main function
if __name__ == '__main__':
train_fs = load_train_fs()
test_fs = load_test_fs()
train_x, train_y = train_type(train_fs)
test_x = test_type(test_fs)
gbc = gbc_classify(train_x, train_y)
svr_preds = gbc_svr_predict(gbc, train_x, train_y, test_x)
gbr_preds = gbc_gbr_predict(gbc, train_x, train_y, test_x)
gp_preds = gbc_gp_predict(train_x, train_y, test_x)
preds_all = svr_preds * 0.5 + gp_preds * 0.2 + gbr_preds * 0.3
output_preds(preds_all)