/* -----------------------------------------------------------------------------
The copyright in this software is being made available under the Clear BSD
License, included below. No patent rights, trademark rights and/or 
other Intellectual Property Rights other than the copyrights concerning 
the Software are granted under this license.
 
The Clear BSD License
 
Copyright (c) 2018-2024, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors.
All rights reserved.
 
Redistribution and use in source and binary forms, with or without modification,
are permitted (subject to the limitations in the disclaimer below) provided that
the following conditions are met:
 
     * Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.
 
     * Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the distribution.
 
     * Neither the name of the copyright holder nor the names of its
     contributors may be used to endorse or promote products derived from this
     software without specific prior written permission.
 
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
 
 
------------------------------------------------------------------------------------------- */
 
/** \file     CodingStructure.h
 *  \brief    A class managing the coding information for a specific image part
 */
 
#include "CodingStructure.h"
 
#include "Unit.h"
#include "Slice.h"
#include "Picture.h"
#include "UnitTools.h"
#include "UnitPartitioner.h"
 
namespace vvdec
{
 
const UnitScale UnitScaleArray[NUM_CHROMA_FORMAT][MAX_NUM_COMPONENT] =
{
  { {2,2}, {0,0}, {0,0} },  // 4:0:0
  { {2,2}, {1,1}, {1,1} },  // 4:2:0
  { {2,2}, {1,2}, {1,2} },  // 4:2:2
  { {2,2}, {2,2}, {2,2} }   // 4:4:4
};
 
// ---------------------------------------------------------------------------
// coding structure method definitions
// ---------------------------------------------------------------------------
 
CodingStructure::CodingStructure( CUChunkCache* cuChunkCache, TUChunkCache* tuChunkCache )
  : area      ()
  , picture   ( nullptr )
  , m_ctuData ( nullptr )
  , m_ctuDataSize( 0 )
  , m_dmvrMvCache ( nullptr )
  , m_cuCache ( cuChunkCache )
  , m_tuCache ( tuChunkCache )
  , m_cuMap   ( nullptr )
  , m_cuMapSize( 0 )
  , m_colMiMap ( nullptr )
  , m_colMiMapSize ( 0 )
  , m_IBCBufferWidth( 0 )
{
}
 
void CodingStructure::destroy()
{
  picture   = nullptr;
 
  m_reco.destroy();
  m_rec_wrap.destroy();
 
  m_virtualIBCbuf.clear();
 
  deallocTempInternals();
 
  if( m_ctuData ) free( m_ctuData );
  m_ctuData = nullptr;
  m_ctuDataSize = 0;
 
  if( m_colMiMap ) free( m_colMiMap );
  m_colMiMap = nullptr;
  m_colMiMapSize = 0;
 
  if( m_cuMap ) free( m_cuMap );
  m_cuMap = nullptr;
  m_cuMapSize = 0;
}
 
void CodingStructure::resetForUse()
{
  vps.reset();
  sps.reset();
  pps.reset();
  picHeader.reset();
  std::fill( std::begin( alfApss ), std::end( alfApss ), nullptr );
  lmcsAps.reset();
  pcv = nullptr;
}
 
CodingUnit& CodingStructure::addCU( const UnitArea &unit, const ChannelType chType, const TreeType treeType, const ModeType modeType, const CodingUnit *cuLeft, const CodingUnit *cuAbove )
{
  CodingUnit *cu = m_cuCache.get();
 
  GCC_WARNING_DISABLE_class_memaccess
  memset( cu, 0, sizeof( CodingUnit ) );
  GCC_WARNING_RESET
 
  cu->minInit    ( unit );
  cu->cs         = this;
  cu->setChType  ( chType );
  cu->setTreeType( treeType );
  cu->setModeType( modeType );
 
  const int currRsAddr = ctuRsAddr( unit.blocks[chType].pos(), chType );
 
  uint32_t numCh = getNumberValidChannels( area.chromaFormat );
 
  CtuData& ctuData = getCtuData( currRsAddr );
  cu->ctuData      = &ctuData;
 
  if( !ctuData.firstCU )
  {
    ctuData.firstCU = cu;
  }
 
  cu->idx = ++ctuData.numCUs;
 
  CodingUnit* prevCU = cu;
  std::swap( ctuData.lastCU, prevCU );
  if( prevCU ) prevCU->next = cu;
 
  cu->predBufOff = ctuData.predBufOffset;
 
  for( uint32_t i = 0; i < numCh; i++ )
  {
    if( !cu->blocks[i].valid() )
    {
      continue;
    }
 
    const int cuArea = cu->blocks[i].area();
 
    if( i )
    {
      ctuData.predBufOffset += ( cuArea << 1 );
    }
    else
    {
      ctuData.predBufOffset += cuArea;
    }
 
    const ptrdiff_t  stride = ptrdiff_t( 1 ) << m_ctuWidthLog2[i];
    const Area&      _blk   = cu->blocks[i];
    const UnitScale  scale  = unitScale[i];
    const int        sclX   = scale.scaleHor( _blk.x );
    const int        sclY   = scale.scaleVer( _blk.y );
    const int        sclW   = scale.scaleHor( _blk.width );
    const int        sclH   = scale.scaleVer( _blk.height );
 
    g_pelBufOP.fillN_CU( ctuData.cuPtr[i] + ( sclX & m_ctuSizeMask[i] ) + ( ( sclY & m_ctuSizeMask[i] ) << m_ctuWidthLog2[i] ), stride, sclW, sclH, cu );
 
    if( i == chType )
    {
      cu->left   = cuLeft;
      cu->above  = cuAbove;
    }
  }
 
  cu->setChType( chType );
 
  if( isLuma( chType ) && unit.lheight() >= 8 && unit.lwidth()  >= 8 && unit.Y().area() >= 128 )
  {
    cu->mvdL0SubPuOff           = ctuData.dmvrMvCacheOffset;
    ctuData.dmvrMvCacheOffset += std::max<int>( 1, unit.lwidth() >> DMVR_SUBCU_WIDTH_LOG2 ) * std::max<int>( 1, unit.lheight() >> DMVR_SUBCU_HEIGHT_LOG2 );
  }
 
  return *cu;
}
 
TransformUnit& CodingStructure::addTU( const UnitArea &unit, const ChannelType chType, CodingUnit& cu )
{
  TransformUnit* tu;
 
  if( cu.firstTU.blocks.empty() )
  {
    tu = cu.lastTU = &cu.firstTU;
  }
  else
  {
    tu = m_tuCache.get();
 
    GCC_WARNING_DISABLE_class_memaccess
    memset( tu, 0, sizeof( TransformUnit ) );
    GCC_WARNING_RESET
 
    cu.lastTU->next = tu;
    cu.lastTU       = tu;
  }
 
  tu->idx               = ++cu.ctuData->numTUs;
  tu->cu                =  &cu;
  tu->setChType         (   chType );
  tu->UnitArea::operator=(  unit );
 
  return *tu;
}
 
void CodingStructure::addEmptyTUs( Partitioner &partitioner, CodingUnit& cu )
{
  const bool split = partitioner.canSplit( TU_MAX_TR_SPLIT, *this );
 
  if( split )
  {
    partitioner.splitCurrArea( TU_MAX_TR_SPLIT, *this );
 
    do
    {
      addTU( partitioner.currArea(), partitioner.chType, cu );
    } while( partitioner.nextPart( *this ) );
 
    partitioner.exitCurrSplit( *this );
  }
  else
  {
    addTU( partitioner.currArea(), partitioner.chType, cu );
  }
}
 
CUTraverser CodingStructure::traverseCUs( const int ctuRsAddr )
{
  CtuData& ctuData = m_ctuData[ctuRsAddr];
 
  return CUTraverser( ctuData.firstCU, ctuData.lastCU->next );
}
 
// coding utilities
 
void CodingStructure::create(const ChromaFormat &_chromaFormat, const Area& _area)
{
  createInternals( UnitArea( _chromaFormat, _area ) );
}
 
void CodingStructure::create(const UnitArea& _unit)
{
  createInternals( _unit );
}
 
void CodingStructure::createInternals( const UnitArea& _unit )
{
  area = _unit;
 
  memcpy( unitScale, UnitScaleArray[area.chromaFormat], sizeof( unitScale ) );
 
  picture = nullptr;
}
 
 
void CodingStructure::rebindPicBufs()
{
  if( !picture->m_bufs[PIC_RECONSTRUCTION].bufs.empty() ) m_reco.createFromBuf( picture->m_bufs[PIC_RECONSTRUCTION] );
  else                                                    m_reco.destroy();
  if( !picture->m_bufs[PIC_RECON_WRAP    ].bufs.empty() ) m_rec_wrap.createFromBuf( picture->m_bufs[PIC_RECON_WRAP] );
  else                                                    m_rec_wrap.destroy();
}
 
void CodingStructure::allocTempInternals()
{
  const ptrdiff_t ctuCuMapSize    = pcv->num4x4CtuBlks;
  const ptrdiff_t ctuColMiMapSize = pcv->num8x8CtuBlks;
 
  if( m_cuMapSize != ctuCuMapSize * pcv->sizeInCtus * 2 )
  {
    if( m_cuMap ) free( m_cuMap );
    m_cuMapSize = ctuCuMapSize * pcv->sizeInCtus * 2;
    m_cuMap     = ( CodingUnit** ) malloc( sizeof( CodingUnit* ) * m_cuMapSize );
  }
 
  if( m_colMiMapSize != ctuColMiMapSize * pcv->sizeInCtus )
  {
    if( m_colMiMap ) free( m_colMiMap );
    m_colMiMapSize = ctuColMiMapSize * pcv->sizeInCtus;
    m_colMiMap     = ( ColocatedMotionInfo* ) malloc( sizeof( ColocatedMotionInfo ) * m_colMiMapSize );
  }
  
  if( m_ctuDataSize != pcv->sizeInCtus )
  {
    m_ctuDataSize = pcv->sizeInCtus;
    if( m_ctuData ) free( m_ctuData );
    m_ctuData = ( CtuData* ) malloc( m_ctuDataSize * sizeof( CtuData ) );
  }
}
 
void CodingStructure::deallocTempInternals()
{
  m_cuCache.releaseAll();
  m_tuCache.releaseAll();
 
  if( m_cuMap ) free( m_cuMap );
  m_cuMap     = nullptr;
  m_cuMapSize = 0;
}
 
void CodingStructure::initStructData()
{
  m_cuCache.releaseAll();
  m_tuCache.releaseAll();
 
  m_widthInCtus = pcv->widthInCtus;
 
  m_ctuSizeMask[0] = pcv->maxCUWidthMask >> unitScale[CH_L].posx;
  m_ctuSizeMask[1] = pcv->maxCUWidthMask >> ( getChannelTypeScaleX( CH_C, area.chromaFormat ) + unitScale[CH_C].posx );
 
  m_ctuWidthLog2[0] = pcv->maxCUWidthLog2 - unitScale[CH_L].posx;
  m_ctuWidthLog2[1] = m_ctuWidthLog2[0]; // same for luma and chroma, because of the 2x2 blocks
 
  GCC_WARNING_DISABLE_class_memaccess
  memset( m_ctuData,             0, sizeof( CtuData             ) * m_ctuDataSize );
  memset( m_cuMap,               0, sizeof( CodingUnit*         ) * m_cuMapSize );
  memset( m_colMiMap, CO_NOT_VALID, sizeof( ColocatedMotionInfo ) * m_colMiMapSize );
  GCC_WARNING_RESET
 
  const ptrdiff_t ctuSampleSizeL  = pcv->maxCUHeight * pcv->maxCUWidth;
  const ptrdiff_t ctuSampleSizeC  = isChromaEnabled( pcv->chrFormat ) ? ( ctuSampleSizeL >> ( getChannelTypeScaleX( CH_C, pcv->chrFormat) + getChannelTypeScaleY( CH_C, pcv->chrFormat ) ) ) : 0;
  const ptrdiff_t ctuSampleSize   = ctuSampleSizeL + 2 * ctuSampleSizeC;
  const ptrdiff_t ctuCuMapSize    = pcv->num4x4CtuBlks;
  const ptrdiff_t ctuColMiMapSize = pcv->num8x8CtuBlks;
 
  hasIbcBlock.clear();
  hasIbcBlock.resize( pcv->heightInCtus, 0 );
 
  for( int y = 0; y < pcv->heightInCtus; y++ )
  {
    for( int x = 0; x < pcv->widthInCtus; x++ )
    {
      int i = y * pcv->widthInCtus + x;
 
      m_ctuData[i].lineIdx = y;
      m_ctuData[i].colIdx  = x;
      m_ctuData[i].ctuIdx  = i;
 
      for( int j = 0; j < 2; j++ )
      {
        m_ctuData[i].cuPtr[j] = &m_cuMap[( 2 * i + j ) * ctuCuMapSize];
      }
 
      m_ctuData[i].colMotion         = &m_colMiMap[i * ctuColMiMapSize];
      m_ctuData[i].predBufOffset     = i * ctuSampleSize;
      m_ctuData[i].dmvrMvCacheOffset = i * pcv->num8x8CtuBlks;
    }
  }
}
 
MotionBuf CodingStructure::getMotionBuf( const Area& _area )
{
  CtuData&        ctuData = getCtuData( ctuRsAddr( _area.pos(), CH_L ) );
 
  const ptrdiff_t  stride = ptrdiff_t( 1 ) << m_ctuWidthLog2[CH_L];
  const UnitScale  scale  = g_miScaling;
 
  return MotionBuf( ctuData.motion + inCtuPos( _area, CH_L ), stride, scale.scaleHor( _area.width ), scale.scaleVer( _area.height ) );
}
 
const CMotionBuf CodingStructure::getMotionBuf( const Area& _area ) const
{
  const CtuData& ctuData  = getCtuData( ctuRsAddr( _area.pos(), CH_L ) );
 
  const ptrdiff_t  stride = ptrdiff_t( 1 ) << m_ctuWidthLog2[CH_L];
  const UnitScale  scale  = g_miScaling;
 
  return CMotionBuf( ctuData.motion + inCtuPos( _area, CH_L ), stride, scale.scaleHor( _area.width ), scale.scaleVer( _area.height ) );
}
 
PelUnitBuf CodingStructure::getPredBuf(const CodingUnit &unit)          
{
  PelUnitBuf ret;
  ret.chromaFormat = unit.chromaFormat;
  ret.bufs.resize_noinit( getNumberValidComponents( unit.chromaFormat ) );
 
  if( unit.Y().valid() )
  {
    ret.bufs[0].buf    = m_predBuf + unit.predBufOff;
    ret.bufs[0].stride = unit.blocks[0].width;
    ret.bufs[0].width  = unit.blocks[0].width;
    ret.bufs[0].height = unit.blocks[0].height;
  }
 
  if( isChromaEnabled( unit.chromaFormat ) )
  {
    if( unit.Cb().valid() )
    {
      ret.bufs[1].buf    = m_predBuf + unit.predBufOff + unit.Y().area();
      ret.bufs[1].stride = unit.blocks[1].width;
      ret.bufs[1].width  = unit.blocks[1].width;
      ret.bufs[1].height = unit.blocks[1].height;
    }
 
    if( unit.Cr().valid() )
    {
      ret.bufs[2].buf    = m_predBuf + unit.predBufOff + unit.Y().area() + unit.Cb().area();
      ret.bufs[2].stride = unit.blocks[2].width;
      ret.bufs[2].width  = unit.blocks[2].width;
      ret.bufs[2].height = unit.blocks[2].height;
    }
  }
 
  return ret;
}
 
const CPelUnitBuf CodingStructure::getPredBuf(const CodingUnit &unit) const
{
  CPelUnitBuf ret;
  ret.chromaFormat = unit.chromaFormat;
  ret.bufs.resize( 3 );
 
  if( unit.Y().valid() )
  {
    ret.bufs[0].buf    = m_predBuf + unit.predBufOff;
    ret.bufs[0].stride = unit.blocks[0].width;
    ret.bufs[0].width  = unit.blocks[0].width;
    ret.bufs[0].height = unit.blocks[0].height;
  }
 
  if( unit.Cb().valid() )
  {
    ret.bufs[1].buf    = m_predBuf + unit.predBufOff + unit.Y().area();
    ret.bufs[1].stride = unit.blocks[1].width;
    ret.bufs[1].width  = unit.blocks[1].width;
    ret.bufs[1].height = unit.blocks[1].height;
  }
 
  if( unit.Cr().valid() )
  {
    ret.bufs[2].buf    = m_predBuf + unit.predBufOff + unit.Y().area() + unit.Cb().area();
    ret.bufs[2].stride = unit.blocks[2].width;
    ret.bufs[2].width  = unit.blocks[2].width;
    ret.bufs[2].height = unit.blocks[2].height;
  }
 
  return ret;
}
 
const ColocatedMotionInfo& CodingStructure::getColInfo( const Position &pos, const Slice*& pColSlice ) const
{
  const CtuData& ctuData    = getCtuData( ctuRsAddr( pos, CH_L ) );
  const ptrdiff_t rsPos     = colMotPos( pos );
  const ColocatedMotionInfo&
                 colMi      = ctuData.colMotion[rsPos];
                 pColSlice  = ctuData.slice;
  
  return colMi;
}
 
const CodingUnit* CodingStructure::getCURestricted( const Position &pos, const CodingUnit& curCu, const ChannelType _chType, const CodingUnit* guess ) const
{
  if( guess && guess->blocks[_chType].contains( pos ) ) return guess;
 
  const int yshift     = pcv->maxCUWidthLog2 - getChannelTypeScaleY( _chType, curCu.chromaFormat );
  const int ydiff      = ( pos.y >> yshift ) - ( curCu.blocks[_chType].y >> yshift ); // ( a <= b ) ==> a - b <= 0
  const int xshift     = pcv->maxCUWidthLog2 - getChannelTypeScaleX( _chType, curCu.chromaFormat );
  const int xdiff      = ( pos.x >> xshift ) - ( curCu.blocks[_chType].x >> xshift );
  const bool sameCTU   = !ydiff && !xdiff;
 
  const CodingUnit* cu = nullptr;
 
  if( sameCTU )
  {
    cu = curCu.ctuData->cuPtr[_chType][inCtuPos( pos, _chType )];
  }
  else if( ydiff > 0 || xdiff > ( 1 - sps->getEntropyCodingSyncEnabledFlag() ) || ( ydiff == 0 && xdiff > 0 ) )
  {
    return nullptr;
  }
  else
  {
    cu = getCU( pos, _chType );
  }
 
  if( !cu || ( sameCTU && cu->idx > curCu.idx ) ) return nullptr;
  else if( sameCTU ) return cu;
 
  if( cu->slice->getIndependentSliceIdx() == curCu.slice->getIndependentSliceIdx() && cu->tileIdx == curCu.tileIdx )
  {
    return cu;
  }
  else
  {
    return nullptr;
  }
}
 
const CodingUnit* CodingStructure::getCURestricted( const Position &pos, const Position curPos, const unsigned curSliceIdx, const unsigned curTileIdx, const ChannelType _chType ) const
{
  const int yshift     = pcv->maxCUWidthLog2 - getChannelTypeScaleY( _chType, area.chromaFormat );
  const int ydiff      = ( pos.y >> yshift ) - ( curPos.y >> yshift ); // ( a <= b ) ==> a - b <= 0
  const int xshift     = pcv->maxCUWidthLog2 - getChannelTypeScaleX( _chType, area.chromaFormat );
  const int xdiff      = ( pos.x >> xshift ) - ( curPos.x >> xshift );
  const bool sameCTU   = !ydiff && !xdiff;
 
  const CodingUnit* cu = nullptr;
  
  if( sameCTU )
  {
    return getCU( pos, _chType );
  }
  else if( ydiff > 0 || xdiff > ( 1 - sps->getEntropyCodingSyncEnabledFlag() ) )
  {
    return nullptr;
  }
  else
  {
    cu = getCU( pos, _chType );
  }
 
  if( cu && cu->slice->getIndependentSliceIdx() == curSliceIdx && cu->tileIdx == curTileIdx )
  {
    return cu;
  }
  else
  {
    return nullptr;
  }
}
 
 
void CodingStructure::initVIbcBuf( int numCtuLines, ChromaFormat chromaFormatIDC, int ctuSize )
{
  m_virtualIBCbuf.resize( numCtuLines );
  for( auto &buf: m_virtualIBCbuf )
 
  if (buf.bufs.empty())
  {
    m_IBCBufferWidth = g_IBCBufferSize / ctuSize;
    buf.create(UnitArea(chromaFormatIDC, Area(0, 0, m_IBCBufferWidth, ctuSize)));
  }
 
}
 
void CodingStructure::fillIBCbuffer( CodingUnit &cu, int lineIdx )
{
  for( const CompArea &area : cu.blocks )
  {
    if (!area.valid())
      continue;
 
    const unsigned int lcuWidth = sps->getMaxCUWidth();
    const int shiftSampleHor = getComponentScaleX(area.compID(), cu.chromaFormat);
    const int shiftSampleVer = getComponentScaleY(area.compID(), cu.chromaFormat);
    const int ctuSizeVerLog2 = getLog2(lcuWidth) - shiftSampleVer;
    const int pux = area.x & ((m_IBCBufferWidth >> shiftSampleHor) - 1);
    const int puy = area.y & (( 1 << ctuSizeVerLog2 ) - 1);
    const CompArea dstArea = CompArea(area.compID(), Position(pux, puy), Size(area.width, area.height));
    CPelBuf srcBuf = getRecoBuf(area);
    PelBuf dstBuf = m_virtualIBCbuf[lineIdx].getBuf(dstArea);
 
    dstBuf.copyFrom(srcBuf);
  }
}
 
}

V630 The 'malloc' function is used to allocate memory for an array of objects which are classes containing constructors.

V730 Not all members of a class are initialized inside the constructor. Consider inspecting: chromaQpAdj, pcv, m_predBuf, m_widthInCtus, m_ctuSizeMask, m_ctuWidthLog2.