Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

change definition of 𝓑 to include more exponents #244

Merged
merged 2 commits into from
Feb 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 11 additions & 7 deletions Carleson/ForestOperator/L2Estimate.lean
Original file line number Diff line number Diff line change
Expand Up @@ -213,13 +213,14 @@ private lemma nontangential_integral_bound₂ (hf : BoundedCompactSupport f) {x
_ = ⨍⁻ y in ball (c I) (16 * D ^ s I), ‖f y‖ₑ ∂volume := by rw [setLaverage_eq]
_ ≤ MB volume 𝓑 c𝓑 r𝓑 f x := by
rw [MB, maximalFunction, inv_one, ENNReal.rpow_one]
have : 4, I⟩ ∈ 𝓑 := by simp [𝓑]
have : (4, 0, I) ∈ 𝓑 := by simp [𝓑]
refine le_of_eq_of_le ?_ (le_biSup _ this)
have : x ∈ ball (c I) (2 ^ 4 * (D : ℝ) ^ s I) := by
refine (ball_subset_ball ?_) (Grid_subset_ball hx)
unfold s
linarith [defaultD_pow_pos a (GridStructure.s I)]
simp_rw [c𝓑, r𝓑, ENNReal.rpow_one, indicator_of_mem this, enorm_eq_nnnorm]
simp_rw [c𝓑, r𝓑, ENNReal.rpow_one, Nat.cast_zero, add_zero, indicator_of_mem this,
enorm_eq_nnnorm]
norm_num

-- Pointwise bound needed for Lemma 7.2.2
Expand Down Expand Up @@ -553,7 +554,7 @@ lemma e728 (hf : BoundedCompactSupport f) (hg : BoundedCompactSupport g) :
split_ifs with hIJ; swap; · rfl
refine mul_le_mul_right' (mul_le_mul_right' ?_ _) _
obtain ⟨b, mb, eb⟩ : ∃ i ∈ 𝓑, ball (c𝓑 i) (r𝓑 i) = ball (c I) (16 * D ^ s I) := by
use 4, I⟩; norm_num [𝓑, c𝓑, r𝓑]
use (4, 0, I); norm_num [𝓑, c𝓑, r𝓑]
rw [MB, maximalFunction]; simp_rw [inv_one, ENNReal.rpow_one]
exact le_iSup₂_of_le b mb (by rw [indicator_of_mem (eb ▸ hIJ.1 my), eb])
_ = _ := by
Expand Down Expand Up @@ -665,12 +666,15 @@ lemma boundary_operator_bound_aux (hf : BoundedCompactSupport f) (hg : BoundedCo
_ ≤ 2 ^ (9 * a + 1) * eLpNorm f 2 volume * (2 ^ (a + (3 / 2 : ℝ)) * eLpNorm g 2 volume) := by
have ST : HasStrongType (α := X) (α' := X) (ε₁ := ℂ) (MB volume 𝓑 c𝓑 r𝓑) 2 2 volume volume
(CMB (defaultA a) 2) := by
refine hasStrongType_MB 𝓑.to_countable (R := 2 ^ (S + 5) * D ^ S)
refine hasStrongType_MB 𝓑.to_countable (R := 2 ^ (S + 5) * D ^ (S + 𝓑max))
(fun ⟨bs, bi⟩ mb ↦ ?_) (by norm_num)
simp_rw [𝓑, mem_prod, mem_Icc, zero_le, mem_univ, and_true, true_and] at mb
unfold r𝓑; gcongr
simp_rw [𝓑, mem_prod, mem_Iic, mem_univ, and_true] at mb
obtain ⟨mb1, mb2⟩ := mb
rw [r𝓑, ← zpow_natCast (n := S + 𝓑max), Nat.cast_add]
gcongr
· exact one_le_two
· rw [← zpow_natCast]; exact zpow_le_zpow_right₀ one_le_D scale_mem_Icc.2
· exact one_le_D
· exact scale_mem_Icc.2
specialize ST g (hg.memℒp 2)
rw [CMB_defaultA_two_eq, ENNReal.coe_rpow_of_ne_zero two_ne_zero, ENNReal.coe_ofNat] at ST
exact mul_le_mul_left' ST.2 _
Expand Down
22 changes: 13 additions & 9 deletions Carleson/ForestOperator/PointwiseEstimate.lean
Original file line number Diff line number Diff line change
Expand Up @@ -234,17 +234,21 @@ lemma boundaryOperator_lt_top (hf : BoundedCompactSupport f) : t.boundaryOperato
exact ENNReal.sum_lt_top.mpr (fun _ _ ↦ ijIntegral_lt_top hf)
· simp [hx]


/- Number of additional exponents we have to include in `𝓑`. Feel free to increase if needed. -/
def 𝓑max : ℕ := 3

/-- The indexing set for the collection of balls 𝓑, defined above Lemma 7.1.3. -/
def 𝓑 : Set (ℕ × Grid X) := Icc 0 (S + 5) ×ˢ univ
def 𝓑 : Set (ℕ × ℕ × Grid X) := Iic (S + 5) ×ˢ Iic 𝓑max ×ˢ univ

/-- The center function for the collection of balls 𝓑. -/
def c𝓑 (z : ℕ × Grid X) : X := c z.2
def c𝓑 (z : ℕ × ℕ × Grid X) : X := c z.2.2

/-- The radius function for the collection of balls 𝓑. -/
def r𝓑 (z : ℕ × Grid X) : ℝ := 2 ^ z.1 * D ^ s z.2
def r𝓑 (z : ℕ × ℕ × Grid X) : ℝ := 2 ^ z.1 * D ^ (s z.2.2 + z.2.1)

lemma 𝓑_finite : (𝓑 (X := X)).Finite :=
finite_Icc .. |>.prod finite_univ
finite_Iic _ |>.prod <| finite_Iic _ |>.prod finite_univ

/-- Lemma 7.1.1, freely translated. -/
lemma convex_scales (hu : u ∈ t) : OrdConnected (t.σ u x : Set ℤ) := by
Expand Down Expand Up @@ -520,16 +524,16 @@ private lemma L7_1_4_laverage_le_MB (hL : L ∈ 𝓛 (t u)) (hx : x ∈ L) (hx'
{p : 𝔓 X} (pu : p ∈ t.𝔗 u) (xp : x ∈ E p) :
(∫⁻ y in ball (𝔠 p) (16 * D ^ 𝔰 p), ‖g y‖₊) / volume (ball (𝔠 p) (16 * D ^ 𝔰 p)) ≤
MB volume 𝓑 c𝓑 r𝓑 g x' := by
have mem_𝓑 : 4, 𝓘 p ∈ 𝓑 := by simp [𝓑]
have mem_𝓑 : (4, 0, 𝓘 p) ∈ 𝓑 := by simp [𝓑]
convert le_biSup (hi := mem_𝓑) <| fun i ↦ ((ball (c𝓑 i) (r𝓑 i)).indicator (x := x') <|
fun _ ↦ ⨍⁻ y in ball (c𝓑 i) (r𝓑 i), ‖g y‖₊ ∂volume)
· have x'_in_ball : x' ∈ ball (c𝓑 (4, 𝓘 p)) (r𝓑 (4, 𝓘 p)) := by
simp only [c𝓑, r𝓑, _root_.s]
· have x'_in_ball : x' ∈ ball (c𝓑 (4, 0, 𝓘 p)) (r𝓑 (4, 0, 𝓘 p)) := by
simp_rw [c𝓑, r𝓑, _root_.s, Nat.cast_zero, add_zero]
have : x' ∈ 𝓘 p := subset_of_mem_𝓛 hL pu (not_disjoint_iff.mpr ⟨x, xp.1, hx⟩) hx'
refine Metric.ball_subset_ball ?_ <| Grid_subset_ball this
linarith [defaultD_pow_pos a (GridStructure.s (𝓘 p))]
have hc𝓑 : 𝔠 p = c𝓑 (4, 𝓘 p) := by simp [c𝓑, 𝔠]
have hr𝓑 : 16 * D ^ 𝔰 p = r𝓑 (4, 𝓘 p) := by rw [r𝓑, 𝔰]; norm_num
have hc𝓑 : 𝔠 p = c𝓑 (4, 0, 𝓘 p) := by simp [c𝓑, 𝔠]
have hr𝓑 : 16 * D ^ 𝔰 p = r𝓑 (4, 0, 𝓘 p) := by rw [r𝓑, 𝔰]; norm_num
simp [-defaultD, laverage, x'_in_ball, ENNReal.div_eq_inv_mul, hc𝓑, hr𝓑]
· simp only [MB, maximalFunction, ENNReal.rpow_one, inv_one]

Expand Down
6 changes: 3 additions & 3 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -4308,12 +4308,12 @@ \section{The pointwise tree estimate}
:=\sum_{I\in\mathcal{D}} \mathbf{1}_{I}(x) \sum_{\substack{J\in \mathcal{J}(\fT(\fu))\\
J\subset B(c(I), 16 D^{s(I)})\\ s(J) \le s(I)}} \frac{D^{(s(J) - s(I))/a}}{\mu(B(c(I), 16D^{s(I)}))}\int_J |f(y)| \, \mathrm{d}\mu(y)\,.
\end{equation}
%changed definition
%changed definition (2x)
Define also the collection of balls
$$
\mathcal{B} = \{B(c(I), 2^s D^{s(I)}) \ : \ I \in \mathcal{D}\,, 0 \le s \le S + 5\}\,.
\mathcal{B} = \{B(c(I), 2^s D^{s(I)+t}) \ : \ I \in \mathcal{D}\,, 0 \le s \le S + 5\,, 0 \le t \le 3\}\,.
$$
%changed definition.
%changed definition. (2x) We can increase the 3 further, if desired

The following pointwise estimate for operators associated to sets $\fT(\fu)$ is the main result of this subsection.

Expand Down