From c02be26037db581049568aee701079856ecc917f Mon Sep 17 00:00:00 2001 From: Leo Diedering Date: Sat, 8 Jun 2024 21:22:56 +0200 Subject: [PATCH] Corrected reference of Theorem 1.1 --- blueprint/src/chapter/main.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/blueprint/src/chapter/main.tex b/blueprint/src/chapter/main.tex index 3b824bff..c1d72412 100644 --- a/blueprint/src/chapter/main.tex +++ b/blueprint/src/chapter/main.tex @@ -39,7 +39,7 @@ \chapter{Introduction} \begin{theorem}[classical Carleson] \label{classical-Carleson} \leanok -\uses{piecewise-constant-approximation, convergence-for-smooth, +\uses{smooth-approximation, convergence-for-smooth, control-approximation-effect} Let $f$ be a $2\pi$-periodic complex-valued uniformly continuous function on $\mathbb{R}$ satisfying the bound $|f(x)|\le 1$ for all $x\in \mathbb{R}$. For all $0<\epsilon<1$, there exists a Borel set $E\subset [0,2\pi]$ with Lebesgue measure $|E|\le \epsilon$ and a positive integer $N_0$ such that for all $x\in [0,2\pi]\setminus E$ and all integers $N>N_0$, we have \begin{equation}\label{aeconv}