Skip to content

Commit

Permalink
Update Carleson_on_the_real_line.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Jun 15, 2024
1 parent 5792e02 commit 4d8c2d8
Showing 1 changed file with 8 additions and 14 deletions.
22 changes: 8 additions & 14 deletions Carleson/Theorem1_1/Carleson_on_the_real_line.lean
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ lemma ConditionallyCompleteLattice.le_biSup {α : Type} [ConditionallyCompleteLi
. simpa
. exact fun x hx => hx.2.symm
rw [this] at hz
have : sSup {f z} = f z := by apply csSup_singleton
have : sSup {f z} = f z := csSup_singleton _
rw [this] at hz
simp at hx
have : f z ≤ x := hx z h
Expand Down Expand Up @@ -195,15 +195,14 @@ lemma localOscillation_of_integer_linear {x R : ℝ} (R_nonneg : 0 ≤ R) : ∀
Real.norm_eq_abs, mul_comm |(n : ℝ) - m|, gt_iff_lt, Nat.ofNat_pos,
_root_.mul_le_mul_left]
gcongr
apply le_abs_self
exact le_abs_self _
_ ≤ ⨆ z ∈ Metric.ball x R ×ˢ Metric.ball x R, ‖(↑n - ↑m) * (z.1 - x) - (↑n - ↑m) * (z.2 - x)‖ := by
apply ConditionallyCompleteLattice.le_biSup
. convert bddAbove_localOscillation (Metric.ball x R) (θ n) (θ m)
exact norm_integer_linear_eq.symm
. use y
simp [abs_of_nonneg, hR'.1, hR'.2]


--TODO: probably not needed any more
lemma bciSup_of_emptyset {α : Type} [ConditionallyCompleteLattice α] {ι : Type} [Nonempty ι] {f : ι → α} :
⨆ i ∈ (∅ : Set ι), f i = sSup ∅ := by
Expand All @@ -220,7 +219,7 @@ lemma bciSup_of_emptyset {α : Type} [ConditionallyCompleteLattice α] {ι : Ty
rw [Set.range_eq_empty_iff]
simp
rw [this]
apply Set.range_const
exact Set.range_const

--lemma frequency_ball_doubling {x R : ℝ} (Rpos : 0 < R) :

Expand All @@ -235,8 +234,7 @@ instance h4 : IsCompatible Θ where
push_neg at Rpos
obtain ⟨n, hθnf⟩ := hf
obtain ⟨m, hθmg⟩ := hg
rw [←hθnf, ←hθmg]
rw [localOscillation_of_integer_linear, localOscillation_of_integer_linear]
rw [←hθnf, ←hθmg, localOscillation_of_integer_linear, localOscillation_of_integer_linear]
ring_nf
gcongr
norm_num
Expand Down Expand Up @@ -319,12 +317,11 @@ instance h4 : IsCompatible Θ where
. rw [balls_def]
simp
calc localOscillation (Metric.ball x R) (θ n') (θ m₁)
_ = 2 * R * |(n' : ℝ) - m₁| := by
apply localOscillation_of_integer_linear Rpos.le
_ = 2 * R * |(n' : ℝ) - m₁| := localOscillation_of_integer_linear Rpos.le _ _
_ = 2 * R * (m₁ - n') := by
rw [abs_of_nonpos]
simp
simp
simp only [neg_sub]
simp only [tsub_le_iff_right, zero_add, Int.cast_le]
rwa [m₁def, Int.le_floor]
_ = 2 * R * (m₁ - n) + 2 * R * (n - n') := by ring
_ < - R' + 2 * R' := by
Expand Down Expand Up @@ -405,9 +402,6 @@ instance h5 : IsCancellative 2 Θ where
/- Lemma 10.36 (real van der Corput) from the paper. -/
norm_integral_exp_le := by sorry




--TODO : add some Real.vol lemma

instance h6 : IsCZKernel 4 K where
Expand All @@ -416,7 +410,7 @@ instance h6 : IsCZKernel 4 K where
intro x y
rw [Complex.norm_eq_abs, Real.vol, MeasureTheory.measureReal_def, Real.dist_eq, Real.volume_ball, ENNReal.toReal_ofReal (by linarith [abs_nonneg (x-y)])]
calc Complex.abs (K x y)
_ ≤ 2 ^ (2 : ℝ) / (2 * |x - y|) := by apply Hilbert_kernel_bound
_ ≤ 2 ^ (2 : ℝ) / (2 * |x - y|) := Hilbert_kernel_bound
_ ≤ 2 ^ (4 : ℝ) ^ 3 / (2 * |x - y|) := by gcongr <;> norm_num
/- uses Hilbert_kernel_regularity -/
norm_sub_le := by
Expand Down

0 comments on commit 4d8c2d8

Please sign in to comment.