-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlpl_main.py
executable file
·181 lines (150 loc) · 7.71 KB
/
lpl_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Torch imports
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning import loggers as pl_loggers
import torchvision.transforms as transforms
from pl_bolts.datamodules import CIFAR10DataModule, STL10DataModule, ImagenetDataModule
from pl_bolts.callbacks.printing import PrintTableMetricsCallback
from pl_bolts.transforms.dataset_normalizations import (
cifar10_normalization,
imagenet_normalization,
stl10_normalization,
)
# Python imports
import os
from argparse import ArgumentParser
# Custom imports
from datasets.simclr_transforms import SimCLRTrainDataTransform, SimCLREvalDataTransform
from datasets.shapes3d_datamodule import Shapes3DDataModule
from models.module import LPL, SupervisedBaseline, NegSampleBaseline
from callbacks.ssl_callbacks import SSLEvalCallback
from utils.utils import generate_descriptor, get_time_stamp
def add_hyperparameter_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
# Data params
parser.add_argument('--dataset', type=str, choices=['cifar10', 'imagenet2012', 'stl10', 'shapes3d'], default='cifar10')
parser.add_argument('--downsample_images', action='store_true')
# Training hyperparams
parser.add_argument("--max_epochs", type=int, default=800, help="number of total epochs to run")
parser.add_argument("--max_steps", type=int, default=-1, help="max steps")
parser.add_argument('--optimizer', choices=['adam', 'sgd'], default='adam')
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=1.5e-6)
parser.add_argument('--warmup_epochs', type=int, default=10)
parser.add_argument("--start_lr", type=float, default=0, help="initial warmup learning rate")
parser.add_argument("--final_lr", type=float, default=1e-6, help="final learning rate")
# Compute params
parser.add_argument("--fast_dev_run", default=1, type=int)
parser.add_argument("--num_nodes", default=1, type=int, help="number of nodes for training")
parser.add_argument("--gpus", default=1, type=int, help="number of gpus to train on")
parser.add_argument("--num_workers", default=16, type=int, help="num of workers per GPU")
parser.add_argument("--fp32", action="store_true")
return parser
def cli_main():
parser = ArgumentParser()
parser.add_argument('--random_seed', type=int, default=24)
parser.add_argument('--experiment_name', type=str, default=get_time_stamp())
parser.add_argument('--resume_from_checkpoint', action='store_true')
parser.add_argument('--verbose_printing', action='store_true')
# Model options
parser.add_argument('--encoder', type=str, choices=['vgg', 'resnet', 'alexnet'], default='vgg')
parser.add_argument('--pretrained', action='store_true')
parser.add_argument('--train_with_supervision', action='store_true')
parser.add_argument('--use_negative_samples', action='store_true')
parser.add_argument('--train_end_to_end', action='store_true')
parser = add_hyperparameter_args(parser)
parser = LPL.add_model_specific_args(parser)
args = parser.parse_args()
# Set up random seeds for reproducibility
seed_everything(args.random_seed)
# Set up log directories (for experimental sanity) and tensorboard logger
ouputdir = os.path.expanduser("~/data/lpl")
dataset = args.dataset
if args.downsample_images:
dataset = dataset + '_downsampled'
if args.encoder != 'vgg':
dataset = dataset + '_' + args.encoder
experiment_descriptor = generate_descriptor(**args.__dict__)
experiment_dir = os.path.join(ouputdir, dataset, experiment_descriptor)
# check if experiment already exists, if so don't overwrite but load from checkpoint
if os.path.exists(experiment_dir):
if args.resume_from_checkpoint:
args.resume_from_checkpoint = experiment_dir
else:
raise ValueError(f"Experiment directory {experiment_dir} already exists, please change experiment name")
# reload tensorboard logger if resuming from checkpoint
if args.resume_from_checkpoint:
args.logger = pl_loggers.TensorBoardLogger(args.resume_from_checkpoint)
tensorboard_logger = pl_loggers.TensorBoardLogger(os.path.join(ouputdir, dataset), name=args.experiment_name,
version=experiment_descriptor)
# Create datamodule
data_dir = os.path.join(os.path.expanduser("~/data/datasets"), args.dataset)
data_module = None
h = 0 # image size
if args.dataset == 'cifar10':
data_module = CIFAR10DataModule.from_argparse_args(args, data_dir=data_dir)
normalization = cifar10_normalization()
(c, h, w) = data_module.size()
elif args.dataset == 'stl10':
data_module = STL10DataModule.from_argparse_args(args, data_dir=data_dir)
normalization = stl10_normalization()
if args.train_with_supervision:
data_module.train_dataloader = data_module.train_dataloader_labeled
else:
data_module.train_dataloader = data_module.train_dataloader
data_module.val_dataloader = data_module.train_dataloader_labeled
(c, h, w) = data_module.size()
if args.downsample_images:
h = 32
elif args.dataset == 'imagenet2012':
data_module = ImagenetDataModule.from_argparse_args(args, data_dir=data_dir, image_size=196)
normalization = imagenet_normalization()
(c, h, w) = data_module.size()
elif args.dataset == 'shapes3d':
data_module = Shapes3DDataModule.from_argparse_args(args, data_dir=data_dir)
(c, h, w) = (3, 64, 64)
if args.dataset != 'shapes3d':
data_module.train_transforms = SimCLRTrainDataTransform(h, normalize=normalization)
data_module.val_transforms = SimCLREvalDataTransform(h, normalize=normalization)
data_module.test_transforms = SimCLREvalDataTransform(h, normalize=normalization)
if args.downsample_images:
data_module.train_transforms = transforms.Compose([transforms.Resize(32),
data_module.train_transforms])
data_module.val_transforms = transforms.Compose([transforms.Resize(32),
data_module.val_transforms])
data_module.test_transforms = transforms.Compose([transforms.Resize(32),
data_module.test_transforms])
args.num_classes = data_module.num_classes
data_module.prepare_data()
data_module.setup()
if args.train_with_supervision:
model = SupervisedBaseline(**args.__dict__)
elif args.use_negative_samples:
model = NegSampleBaseline(**args.__dict__)
else:
model = LPL(**args.__dict__)
# callbacks
printing = PrintTableMetricsCallback()
if args.gpus > 1:
print("Online evaluation with multi-gpu training currently not supported, use notebooks for post-training evaluation instead")
callbacks = []
else:
repr_eval = SSLEvalCallback(num_epochs=20, test_dataloader=data_module.test_dataloader())
callbacks = [repr_eval]
if args.verbose_printing:
callbacks.append(printing)
trainer = pl.Trainer(
max_epochs=args.max_epochs,
max_steps=None if args.max_steps == -1 else args.max_steps,
gpus=args.gpus,
num_nodes=args.num_nodes,
accelerator="ddp" if args.gpus > 1 else None,
sync_batchnorm=True if args.gpus > 1 else False,
callbacks=callbacks,
logger=tensorboard_logger,
profiler="simple",
)
trainer.fit(model, data_module)
if __name__ == '__main__':
cli_main()