-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_amd_joint_generate.py
399 lines (341 loc) · 17.3 KB
/
2_amd_joint_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
from utils.fixseed import fixseed
import os
import numpy as np
import torch
from utils.parser_util import custom_generate_args
from utils.model_util import create_model_and_diffusion, load_model_wo_clip
from utils import dist_util
from model.cfg_sampler import ClassifierFreeSampleModel
from data_loaders.get_data import get_dataset_loader
from data_loaders.humanml.scripts.motion_process import recover_from_ric
import data_loaders.humanml.utils.paramUtil as paramUtil
from data_loaders.humanml.utils.plot_script import plot_3d_motion
import shutil
from data_loaders.tensors import collate
from text2length import LengthEstimator
from copy import deepcopy
def lengths_to_mask(lengths, max_len):
# max_len = max(lengths)
mask = torch.arange(max_len, device=lengths.device).expand(len(lengths), max_len) < lengths.unsqueeze(1)
return mask
def ProcessSmp(model, data, sample, model_kwargs):
# Recover XYZ *positions* from HumanML3D vector representation
if model.data_rep == 'hml_vec':
n_joints = 22 if sample.shape[1] == 263 else 21
sample = data.dataset.t2m_dataset.inv_transform(sample.cpu().permute(0, 2, 3, 1)).float()
sample = recover_from_ric(sample, n_joints)
sample = sample.view(-1, *sample.shape[2:]).permute(0, 2, 3, 1)
rot2xyz_pose_rep = 'xyz' if model.data_rep in ['xyz', 'hml_vec'] else model.data_rep
rot2xyz_mask = None if rot2xyz_pose_rep == 'xyz' else model_kwargs['y']['mask'].reshape(args.batch_size, n_frames).bool()
sample = model.rot2xyz(x=sample, mask=rot2xyz_mask, pose_rep=rot2xyz_pose_rep, glob=True, translation=True,
jointstype='smpl', vertstrans=True, betas=None, beta=0, glob_rot=None,
get_rotations_back=False)
text_smp = deepcopy(model_kwargs['y']['text'])
motion_smp = deepcopy(sample.cpu().numpy())
length_smp = deepcopy(model_kwargs['y']['lengths'].cpu().numpy())
return text_smp, motion_smp, length_smp
def ProcessGT(model, data, sample_0, cond_0, sample_1, cond_1):
text_concat = deepcopy(cond_0['y']['text_curr'])
for i in range(len(text_concat)):
text_concat[i] = text_concat[i].replace('.', ', ') + cond_1['y']['text_curr'][i]
length_0 = deepcopy(cond_0['y']['lengths_curr'].cpu().numpy())
length_1 = deepcopy(cond_1['y']['lengths_curr'].cpu().numpy())
# print(sample_0.shape)
# print(sample_1.shape)
sample_0 = sample_0.cpu().numpy()
sample_1 = sample_1.cpu().numpy()
sample_concat = []
for i in range(sample_0.shape[0]):
s_tmp_0 = sample_0[i][:,:,0:length_0[i]]
s_tmp_1 = sample_1[i][:,:,0:length_1[i]]
len_tmp_concat = length_0[i]+length_1[i]
s_tmp_concat = np.concatenate((s_tmp_0, s_tmp_1, np.zeros((s_tmp_0.shape[0], s_tmp_0.shape[1], 196*2 - len_tmp_concat))), axis = 2)
sample_concat.append(s_tmp_concat)
sample_concat = torch.tensor(np.array(sample_concat))
n_joints = 22 if sample_concat.shape[1] == 263 else 21
sample_concat = data.dataset.t2m_dataset.inv_transform(sample_concat.permute(0, 2, 3, 1)).float()
sample_concat = recover_from_ric(sample_concat, n_joints)
sample_concat = sample_concat.view(-1, *sample_concat.shape[2:]).permute(0, 2, 3, 1)
sample_concat = model.rot2xyz(x=sample_concat, mask=None, pose_rep='xyz', glob=True, translation=True,
jointstype='smpl', vertstrans=True, betas=None, beta=0, glob_rot=None,
get_rotations_back=False)
motion_concat = deepcopy(sample_concat.cpu().numpy())
return text_concat, motion_concat, length_0, length_1
def VisualizeSmp(args, total_num_samples, fps, all_text, all_motions, all_lengths, gt_frames_per_sample, out_path):
all_motions = np.concatenate(all_motions, axis=0)
all_motions = all_motions[:total_num_samples] # [bs, njoints, 6, seqlen]
all_text = all_text[:total_num_samples]
all_lengths = np.concatenate(all_lengths, axis=0)[:total_num_samples]
if os.path.exists(out_path):
shutil.rmtree(out_path)
os.makedirs(out_path)
npy_path = os.path.join(out_path, 'results.npy')
print(f"saving results file to [{npy_path}]")
np.save(npy_path,
{'motion': all_motions, 'text': all_text, 'lengths': all_lengths,
'num_samples': args.num_samples, 'num_repetitions': args.num_repetitions})
with open(npy_path.replace('.npy', '.txt'), 'w') as fw:
fw.write('\n'.join(all_text))
with open(npy_path.replace('.npy', '_len.txt'), 'w') as fw:
fw.write('\n'.join([str(l) for l in all_lengths]))
print(f"saving visualizations to [{out_path}]...")
skeleton = paramUtil.kit_kinematic_chain if args.dataset == 'kit' else paramUtil.t2m_kinematic_chain
sample_files = []
num_samples_in_out_file = 7
for sample_i in range(args.num_samples):
rep_files = []
for rep_i in range(args.num_repetitions):
# caption = all_text[rep_i*args.batch_size + sample_i]
caption = ""
length = all_lengths[rep_i*args.batch_size + sample_i]
motion = all_motions[rep_i*args.batch_size + sample_i].transpose(2, 0, 1)[:length]
save_file = 'sample{:02d}_rep{:02d}.mp4'.format(sample_i, rep_i)
animation_save_path = os.path.join(out_path, save_file)
print(f'[({sample_i}) "{caption}" | Rep #{rep_i} | -> {save_file}]')
# plot_3d_motion(animation_save_path, skeleton, motion, dataset=args.dataset, title=caption, fps=fps)
plot_3d_motion(animation_save_path, skeleton, motion, title=caption,
dataset=args.dataset, fps=fps, vis_mode='in_between',
gt_frames=gt_frames_per_sample.get(sample_i, []))
# Credit for visualization: https://github.com/EricGuo5513/text-to-motion
rep_files.append(animation_save_path)
all_rep_save_file = os.path.join(out_path, 'sample{:02d}.mp4'.format(sample_i))
ffmpeg_rep_files = [f' -i {f} ' for f in rep_files]
hstack_args = f' -filter_complex hstack=inputs={args.num_repetitions}' if args.num_repetitions > 1 else ''
ffmpeg_rep_cmd = f'ffmpeg -y -loglevel warning ' + ''.join(ffmpeg_rep_files) + f'{hstack_args} {all_rep_save_file}'
os.system(ffmpeg_rep_cmd)
print(f'[({sample_i}) "{caption}" | all repetitions | -> {all_rep_save_file}]')
sample_files.append(all_rep_save_file)
if (sample_i+1) % num_samples_in_out_file == 0 or sample_i+1 == args.num_samples:
all_sample_save_file = os.path.join(out_path, f'samples_{(sample_i - len(sample_files) + 1):02d}_to_{sample_i:02d}.mp4')
ffmpeg_rep_files = [f' -i {f} ' for f in sample_files]
vstack_args = f' -filter_complex vstack=inputs={len(sample_files)}' if len(sample_files) > 1 else ''
ffmpeg_rep_cmd = f'ffmpeg -y -loglevel warning ' + ''.join(ffmpeg_rep_files) + f'{vstack_args} {all_sample_save_file}'
os.system(ffmpeg_rep_cmd)
print(f'[(samples {(sample_i - len(sample_files) + 1):02d} to {sample_i:02d}) | all repetitions | -> {all_sample_save_file}]')
sample_files = []
abs_path = os.path.abspath(out_path)
print(f'[Done] Results are at [{abs_path}]')
def VisualizeGT(args, total_num_samples, fps, all_text, all_motions, all_lengths_0, all_lengths_1, gt_frames_per_sample, out_path):
all_motions = np.concatenate(all_motions, axis=0)
all_motions = all_motions[:total_num_samples] # [bs, njoints, 6, seqlen]
all_text = all_text[:total_num_samples]
all_lengths_0 = np.concatenate(all_lengths_0, axis=0)[:total_num_samples]
all_lengths_1 = np.concatenate(all_lengths_1, axis=0)[:total_num_samples]
if os.path.exists(out_path):
shutil.rmtree(out_path)
os.makedirs(out_path)
npy_path = os.path.join(out_path, 'results.npy')
print(f"saving results file to [{npy_path}]")
np.save(npy_path,
{'motion': all_motions, 'text': all_text, 'lengths_0': all_lengths_0, 'lengths_1': all_lengths_1,
'num_samples': args.num_samples, 'num_repetitions': args.num_repetitions})
with open(npy_path.replace('.npy', '.txt'), 'w') as fw:
fw.write('\n'.join(all_text))
with open(npy_path.replace('.npy', '_len_0.txt'), 'w') as fw:
fw.write('\n'.join([str(l) for l in all_lengths_0]))
with open(npy_path.replace('.npy', '_len_1.txt'), 'w') as fw:
fw.write('\n'.join([str(l) for l in all_lengths_1]))
print(f"saving visualizations to [{out_path}]...")
skeleton = paramUtil.kit_kinematic_chain if args.dataset == 'kit' else paramUtil.t2m_kinematic_chain
sample_files = []
num_samples_in_out_file = 7
for sample_i in range(args.num_samples):
rep_files = []
for rep_i in range(args.num_repetitions):
# caption = all_text[rep_i*args.batch_size + sample_i]
caption = ""
length_0 = all_lengths_0[rep_i*args.batch_size + sample_i]
length_1 = all_lengths_1[rep_i*args.batch_size + sample_i]
# print(length_0)
# print(length_1)
m_tmp = all_motions[rep_i*args.batch_size + sample_i].transpose(2, 0, 1)
# print(m_tmp.shape)
# motion = np.concatenate((m_tmp[:length_0], m_tmp[196:196+length_1]), axis = 0)
motion = m_tmp[:length_0+length_1]
# print(motion.shape)
save_file = 'sample{:02d}_rep{:02d}.mp4'.format(sample_i, rep_i)
animation_save_path = os.path.join(out_path, save_file)
print(f'[({sample_i}) "{caption}" | Rep #{rep_i} | -> {save_file}]')
# plot_3d_motion(animation_save_path, skeleton, motion, dataset=args.dataset, title=caption, fps=fps)
plot_3d_motion(animation_save_path, skeleton, motion, title=caption,
dataset=args.dataset, fps=fps, vis_mode='in_between',
gt_frames=gt_frames_per_sample.get(sample_i, []))
# Credit for visualization: https://github.com/EricGuo5513/text-to-motion
rep_files.append(animation_save_path)
all_rep_save_file = os.path.join(out_path, 'sample{:02d}.mp4'.format(sample_i))
ffmpeg_rep_files = [f' -i {f} ' for f in rep_files]
hstack_args = f' -filter_complex hstack=inputs={args.num_repetitions}' if args.num_repetitions > 1 else ''
ffmpeg_rep_cmd = f'ffmpeg -y -loglevel warning ' + ''.join(ffmpeg_rep_files) + f'{hstack_args} {all_rep_save_file}'
os.system(ffmpeg_rep_cmd)
print(f'[({sample_i}) "{caption}" | all repetitions | -> {all_rep_save_file}]')
sample_files.append(all_rep_save_file)
if (sample_i+1) % num_samples_in_out_file == 0 or sample_i+1 == args.num_samples:
all_sample_save_file = os.path.join(out_path, f'samples_{(sample_i - len(sample_files) + 1):02d}_to_{sample_i:02d}.mp4')
ffmpeg_rep_files = [f' -i {f} ' for f in sample_files]
vstack_args = f' -filter_complex vstack=inputs={len(sample_files)}' if len(sample_files) > 1 else ''
ffmpeg_rep_cmd = f'ffmpeg -y -loglevel warning ' + ''.join(ffmpeg_rep_files) + f'{vstack_args} {all_sample_save_file}'
os.system(ffmpeg_rep_cmd)
print(f'[(samples {(sample_i - len(sample_files) + 1):02d} to {sample_i:02d}) | all repetitions | -> {all_sample_save_file}]')
sample_files = []
abs_path = os.path.abspath(out_path)
print(f'[Done] Results are at [{abs_path}]')
def Generate(args, motion_len_list):
fixseed(args.seed)
out_path = args.output_dir
name = os.path.basename(os.path.dirname(args.model_path))
niter = os.path.basename(args.model_path).replace('model', '').replace('.pt', '')
max_frames = 196 if args.dataset in ['kit', 'humanml', 'autoreg'] else 60
fps = 12.5 if args.dataset == 'kit' else 20
np_len_list = np.expand_dims(np.array(motion_len_list), axis = 0)
np_max_frames = np.expand_dims(np.full(len(motion_len_list), max_frames), axis = 0)
n_frames_arr = np.min(np.concatenate((np_len_list, np_max_frames)), axis = 0)
print(n_frames_arr)
is_using_data = not any([args.input_text, args.text_prompt, args.action_file, args.action_name])
dist_util.setup_dist(args.device)
if out_path == '':
out_path = os.path.join(os.path.dirname(args.model_path), '2_JOINT',
'samples_{}_{}_seed{}'.format(name, niter, args.seed))
gt_path = os.path.join(os.path.dirname(args.model_path), '2_JOINT',
'GT_{}_{}_seed{}'.format(name, niter, args.seed))
#=============================================================================
# TODO: text prompt for keyboard input
if args.text_prompt != '':
out_path += '_' + args.text_prompt.replace(' ', '_').replace('.', '')
elif args.input_text != '':
out_path += '_' + os.path.basename(args.input_text).replace('.txt', '').replace(' ', '_').replace('.', '')
# this block must be called BEFORE the dataset is loaded
if args.text_prompt != '':
texts = [args.text_prompt]
args.num_samples = 1
elif args.input_text != '':
assert os.path.exists(args.input_text)
with open(args.input_text, 'r') as fr:
texts = fr.readlines()
texts = [s.replace('\n', '') for s in texts]
args.num_samples = len(texts)
elif args.action_name:
action_text = [args.action_name]
args.num_samples = 1
elif args.action_file != '':
assert os.path.exists(args.action_file)
with open(args.action_file, 'r') as fr:
action_text = fr.readlines()
action_text = [s.replace('\n', '') for s in action_text]
args.num_samples = len(action_text)
#=============================================================================
assert args.num_samples <= args.batch_size, \
f'Please either increase batch_size({args.batch_size}) or reduce num_samples({args.num_samples})'
args.batch_size = args.num_samples
print('Loading dataset...')
# data = get_dataset_loader(name=args.dataset,
# batch_size=args.batch_size,
# data_root=args.data_dir,
# num_frames=max_frames,
# split='test',
# hml_mode='text_only')
data = get_dataset_loader(name='autoreg',
batch_size=args.batch_size,
data_root=args.data_dir,
num_frames=max_frames,
split='val',
hml_mode='train')
# data.dataset.t2m_dataset.fixed_length_arr = n_frames_arr
total_num_samples = args.num_samples * args.num_repetitions
print("Creating model and diffusion...")
model, diffusion = create_model_and_diffusion(args, data)
print(f"Loading checkpoints from [{args.model_path}]...")
state_dict = torch.load(args.model_path, map_location='cpu')
load_model_wo_clip(model, state_dict)
if args.guidance_param != 1:
model = ClassifierFreeSampleModel(model) # wrapping model with the classifier-free sampler
model.to(dist_util.dev())
model.eval() # disable random masking
if is_using_data:
iterator = iter(data)
motion_0, cond_0, motion_1, cond_1 = next(iterator)
# motion_0, cond_0, motion_1, cond_1 = next(iterator)
model_kwargs = {'y':{}}
text_concat = deepcopy(cond_0['y']['text_curr'])
for i in range(len(text_concat)):
text_concat[i] = text_concat[i].replace('.', ', ') + cond_1['y']['text_curr'][i]
model_kwargs['y']['text'] = text_concat
print(model_kwargs['y']['text'])
length_concat = deepcopy(cond_0['y']['lengths_curr'])
for i in range(len(length_concat)):
length_concat[i] = length_concat[i] + cond_1['y']['lengths_curr'][i]
model_kwargs['y']['lengths'] = length_concat
print(model_kwargs['y']['lengths'])
model_kwargs['y']['mask'] = lengths_to_mask(model_kwargs['y']['lengths'], max_frames*2).unsqueeze(1).unsqueeze(1)
print(model_kwargs['y']['mask'] .shape)
else:
#=============================================================================
# TODO: text prompt for keyboard input
collate_args = [{'inp': torch.zeros(n_frames), 'tokens': None, 'lengths': n_frames}] * args.num_samples
is_t2m = any([args.input_text, args.text_prompt])
if is_t2m:
# t2m
collate_args = [dict(arg, text=txt) for arg, txt in zip(collate_args, texts)]
else:
# a2m
action = data.dataset.action_name_to_action(action_text)
collate_args = [dict(arg, action=one_action, action_text=one_action_text) for
arg, one_action, one_action_text in zip(collate_args, action, action_text)]
_, model_kwargs = collate(collate_args)
#=============================================================================
gt_frames_per_sample = {}
for i in range(cond_0['y']['lengths_curr'].shape[0]):
gt_frames_per_sample[i] = list(range(0, cond_0['y']['lengths_curr'][i]))
all_motions = []
all_lengths = []
all_text = []
# gt_all_motions = []
# gt_all_lengths_0 = []
# gt_all_lengths_1 = []
# gt_all_text = []
for rep_i in range(args.num_repetitions):
print(f'### Sampling [repetitions #{rep_i}]')
# add CFG scale to batch
if args.guidance_param != 1:
model_kwargs['y']['scale'] = torch.ones(args.batch_size, device=dist_util.dev()) * args.guidance_param
sample_fn = diffusion.p_sample_loop
sample = sample_fn(
model,
# (args.batch_size, model.njoints, model.nfeats, n_frames_arr[0]),
(args.batch_size, model.njoints, model.nfeats, max_frames*2),
clip_denoised=False,
model_kwargs=model_kwargs,
skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
init_image=None,
progress=True,
dump_steps=None,
noise=None,
const_noise=False,
)
# gt_text_concat, gt_motion_concat, gt_length_0, gt_length_1 = ProcessGT(model, data, motion_0, cond_0, motion_1, cond_1)
# gt_all_text += gt_text_concat
# gt_all_motions.append(gt_motion_concat)
# gt_all_lengths_0.append(gt_length_0)
# gt_all_lengths_1.append(gt_length_1)
# print(f"created {len(gt_all_motions) * args.batch_size} gts")
text_smp, motion_smp, length_smp = ProcessSmp(model, data, sample, model_kwargs)
all_text += text_smp
all_motions.append(motion_smp)
all_lengths.append(length_smp)
print(f"created {len(all_motions) * args.batch_size} samples")
# VisualizeGT(args, total_num_samples, fps, gt_all_text, gt_all_motions, gt_all_lengths_0, gt_all_lengths_1, gt_path)
VisualizeSmp(args, total_num_samples, fps, all_text, all_motions, all_lengths, gt_frames_per_sample, out_path)
if __name__ == "__main__":
model_path = ''
data_root = ''
m_len_list = [120, 80]
# m_len_list = []
# for text in text_list:
# m_len = LengthEstimator(t2l_checkpoints_name).t2l_gen(text)
# print('caption: ', text)
# print('motion_len: ', m_len)
# m_len_list.appand(m_len)
args = custom_generate_args(model_path)
# args.text_prompt = text
args.data_dir = data_root
args.num_repetitions = 1
Generate(args, m_len_list)