Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

unittest: add MLA test cases where kv_len is evenly divided by page_size. #861

Merged
merged 2 commits into from
Feb 17, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 24 additions & 12 deletions tests/test_deepseek_mla.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,24 @@ def test_batch_prefill_with_ragged_kv_cache(
torch.testing.assert_close(lse, lse_buffer, rtol=1e-3, atol=1e-3)


def generate_kv_from_cache(ckv, kpe, kv_len, batch_size, num_heads):
bs_page_num, page_size, ckv_dim = ckv.shape
page_num = bs_page_num // batch_size
_, _, kpe_dim = kpe.shape
ckv = ckv.view(batch_size, page_num * page_size, ckv_dim)
kpe = kpe.view(batch_size, page_num * page_size, kpe_dim)
ckv = ckv[:, :kv_len, :]
kpe = kpe[:, :kv_len, :]
k = (
torch.cat([ckv, kpe], dim=-1)
.view(-1, 1, ckv_dim + kpe_dim)
.repeat_interleave(num_heads, dim=1)
)
v = ckv.repeat_interleave(num_heads, dim=1)

return k, v


@pytest.mark.parametrize("batch_size", [1, 17, 37])
@pytest.mark.parametrize("kv_len", [17, 33, 96, 97, 114, 514, 1024])
@pytest.mark.parametrize("qo_len", [1, 17, 37, 77])
Expand All @@ -171,8 +189,6 @@ def test_batch_mla_page_attention(
if causal and qo_len > kv_len:
pytest.skip("qo_len > kv_len not supported for causal attention")
torch.manual_seed(42)
if kv_len % page_size != 0:
pytest.skip("kv_len not divisible by page_size")
head_dim_ckv = 512
head_dim_kpe = 64
q_nope = torch.randn(
Expand All @@ -181,15 +197,16 @@ def test_batch_mla_page_attention(
q_pe = torch.randn(
batch_size * qo_len, num_heads, head_dim_kpe, dtype=torch.half, device="cuda"
)
pages_num = math.ceil(kv_len / page_size)
ckv = torch.randn(
batch_size * kv_len // page_size,
batch_size * pages_num,
page_size,
head_dim_ckv,
dtype=torch.half,
device="cuda",
)
kpe = torch.randn(
batch_size * kv_len // page_size,
batch_size * pages_num,
page_size,
head_dim_kpe,
dtype=torch.half,
Expand All @@ -201,8 +218,8 @@ def test_batch_mla_page_attention(
workspace_buffer, backend=backend
)
q_indptr = torch.arange(0, batch_size + 1).to(0).int() * qo_len
kv_indptr = torch.arange(0, batch_size + 1).to(0).int() * kv_len // page_size
kv_indices = torch.arange(0, batch_size * kv_len // page_size).to(0).int()
kv_indptr = torch.arange(0, batch_size + 1).to(0).int() * pages_num
kv_indices = torch.arange(0, batch_size * pages_num).to(0).int()
kv_lens = torch.full((batch_size,), kv_len, dtype=torch.int32).to(0)
wrapper.plan(
q_indptr,
Expand All @@ -220,12 +237,7 @@ def test_batch_mla_page_attention(
)
o, lse = wrapper.run(q_nope, q_pe, ckv, kpe, return_lse=True)

k = (
torch.cat([ckv, kpe], dim=-1)
.view(-1, 1, head_dim_ckv + head_dim_kpe)
.repeat_interleave(num_heads, dim=1)
)
v = ckv.repeat_interleave(num_heads, dim=1)
k, v = generate_kv_from_cache(ckv, kpe, kv_len, batch_size, num_heads)

q = torch.cat([q_nope, q_pe], dim=-1)
o_ref, lse_ref = attention_ref(batch_size, q, k, v, causal, sm_scale)
Expand Down