-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
530 lines (457 loc) · 17.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
"""YOLO_v3 Model Defined in Keras."""
from functools import wraps
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import (
Conv2D,
Add,
ZeroPadding2D,
UpSampling2D,
Concatenate,
MaxPooling2D,
)
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l2
from functools import reduce
def compose(*funcs):
"""Compose arbitrarily many functions, evaluated left to right.
Reference: https://mathieularose.com/function-composition-in-python/
"""
# return lambda x: reduce(lambda v, f: f(v), funcs, x)
if funcs:
return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)
else:
raise ValueError("Composition of empty sequence not supported.")
@wraps(Conv2D)
def DarknetConv2D(*args, **kwargs):
"""Wrapper to set Darknet parameters for Convolution2D."""
darknet_conv_kwargs = {"kernel_regularizer": l2(5e-4)}
darknet_conv_kwargs["padding"] = (
"valid" if kwargs.get("strides") == (2, 2) else "same"
)
darknet_conv_kwargs.update(kwargs)
return Conv2D(*args, **darknet_conv_kwargs)
def DarknetConv2D_BN_Leaky(*args, **kwargs):
"""Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
no_bias_kwargs = {"use_bias": False}
no_bias_kwargs.update(kwargs)
return compose(
DarknetConv2D(*args, **no_bias_kwargs),
BatchNormalization(),
LeakyReLU(alpha=0.1),
)
def resblock_body(x, num_filters, num_blocks):
"""A series of resblocks starting with a downsampling Convolution2D"""
# Darknet uses left and top padding instead of 'same' mode
x = ZeroPadding2D(((1, 0), (1, 0)))(x)
x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x)
for i in range(num_blocks):
y = compose(
DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)),
DarknetConv2D_BN_Leaky(num_filters, (3, 3)),
)(x)
x = Add()([x, y])
return x
def darknet_body(x):
"""Darknent body having 52 Convolution2D layers"""
x = DarknetConv2D_BN_Leaky(32, (3, 3))(x)
x = resblock_body(x, 64, 1)
x = resblock_body(x, 128, 2)
x = resblock_body(x, 256, 8)
x = resblock_body(x, 512, 8)
x = resblock_body(x, 1024, 4)
return x
def make_last_layers(x, num_filters, out_filters):
"""6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer"""
x = compose(
DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
)(x)
y = compose(
DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
DarknetConv2D(out_filters, (1, 1)),
)(x)
return x, y
def yolo_body(inputs, num_anchors, num_classes):
"""Create YOLO_V3 model CNN body in Keras."""
darknet = Model(inputs, darknet_body(inputs))
x, y1 = make_last_layers(darknet.output, 512, num_anchors * (num_classes + 5))
x = compose(DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x)
x = Concatenate()([x, darknet.layers[152].output])
x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))
x = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x)
x = Concatenate()([x, darknet.layers[92].output])
x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))
return Model(inputs, [y1, y2, y3])
def tiny_yolo_body(inputs, num_anchors, num_classes):
"""Create Tiny YOLO_v3 model CNN body in keras."""
x1 = compose(
DarknetConv2D_BN_Leaky(16, (3, 3)),
MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"),
DarknetConv2D_BN_Leaky(32, (3, 3)),
MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"),
DarknetConv2D_BN_Leaky(64, (3, 3)),
MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"),
DarknetConv2D_BN_Leaky(128, (3, 3)),
MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"),
DarknetConv2D_BN_Leaky(256, (3, 3)),
)(inputs)
x2 = compose(
MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"),
DarknetConv2D_BN_Leaky(512, (3, 3)),
MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding="same"),
DarknetConv2D_BN_Leaky(1024, (3, 3)),
DarknetConv2D_BN_Leaky(256, (1, 1)),
)(x1)
y1 = compose(
DarknetConv2D_BN_Leaky(512, (3, 3)),
DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)),
)(x2)
x2 = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x2)
y2 = compose(
Concatenate(),
DarknetConv2D_BN_Leaky(256, (3, 3)),
DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)),
)([x2, x1])
return Model(inputs, [y1, y2])
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
"""Convert final layer features to bounding box parameters."""
num_anchors = len(anchors)
# Reshape to batch, height, width, num_anchors, box_params.
anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
grid_shape = K.shape(feats)[1:3] # height, width
grid_y = K.tile(
K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
[1, grid_shape[1], 1, 1],
)
grid_x = K.tile(
K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
[grid_shape[0], 1, 1, 1],
)
grid = K.concatenate([grid_x, grid_y])
grid = K.cast(grid, K.dtype(feats))
feats = K.reshape(
feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]
)
# Adjust preditions to each spatial grid point and anchor size.
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(
grid_shape[::-1], K.dtype(feats)
)
box_wh = (
K.exp(feats[..., 2:4])
* anchors_tensor
/ K.cast(input_shape[::-1], K.dtype(feats))
)
box_confidence = K.sigmoid(feats[..., 4:5])
box_class_probs = K.sigmoid(feats[..., 5:])
if calc_loss == True:
return grid, feats, box_xy, box_wh
return box_xy, box_wh, box_confidence, box_class_probs
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
"""Get corrected boxes"""
box_yx = box_xy[..., ::-1]
box_hw = box_wh[..., ::-1]
input_shape = K.cast(input_shape, K.dtype(box_yx))
image_shape = K.cast(image_shape, K.dtype(box_yx))
new_shape = K.round(image_shape * K.min(input_shape / image_shape))
offset = (input_shape - new_shape) / 2.0 / input_shape
scale = input_shape / new_shape
box_yx = (box_yx - offset) * scale
box_hw *= scale
box_mins = box_yx - (box_hw / 2.0)
box_maxes = box_yx + (box_hw / 2.0)
boxes = K.concatenate(
[
box_mins[..., 0:1], # y_min
box_mins[..., 1:2], # x_min
box_maxes[..., 0:1], # y_max
box_maxes[..., 1:2], # x_max
]
)
# Scale boxes back to original image shape.
boxes *= K.concatenate([image_shape, image_shape])
return boxes
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
"""Process Conv layer output"""
box_xy, box_wh, box_confidence, box_class_probs = yolo_head(
feats, anchors, num_classes, input_shape
)
boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
boxes = K.reshape(boxes, [-1, 4])
box_scores = box_confidence * box_class_probs
box_scores = K.reshape(box_scores, [-1, num_classes])
return boxes, box_scores
def yolo_eval(
yolo_outputs,
anchors,
num_classes,
image_shape,
max_boxes=20,
score_threshold=0.6,
iou_threshold=0.5,
):
"""Evaluate YOLO model on given input and return filtered boxes."""
num_layers = len(yolo_outputs)
anchor_mask = (
[[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
) # default setting
input_shape = K.shape(yolo_outputs[0])[1:3] * 32
boxes = []
box_scores = []
for l in range(num_layers):
_boxes, _box_scores = yolo_boxes_and_scores(
yolo_outputs[l],
anchors[anchor_mask[l]],
num_classes,
input_shape,
image_shape,
)
boxes.append(_boxes)
box_scores.append(_box_scores)
boxes = K.concatenate(boxes, axis=0)
box_scores = K.concatenate(box_scores, axis=0)
mask = box_scores >= score_threshold
max_boxes_tensor = K.constant(max_boxes, dtype="int32")
boxes_ = []
scores_ = []
classes_ = []
for c in range(num_classes):
# TODO: use keras backend instead of tf.
class_boxes = tf.boolean_mask(boxes, mask[:, c])
class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
nms_index = tf.image.non_max_suppression(
class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold
)
class_boxes = K.gather(class_boxes, nms_index)
class_box_scores = K.gather(class_box_scores, nms_index)
classes = K.ones_like(class_box_scores, "int32") * c
boxes_.append(class_boxes)
scores_.append(class_box_scores)
classes_.append(classes)
boxes_ = K.concatenate(boxes_, axis=0)
scores_ = K.concatenate(scores_, axis=0)
classes_ = K.concatenate(classes_, axis=0)
return boxes_, scores_, classes_
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
"""Preprocess true boxes to training input format
Parameters
----------
true_boxes: array, shape=(m, T, 5)
Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
input_shape: array-like, hw, multiples of 32
anchors: array, shape=(N, 2), wh
num_classes: integer
Returns
-------
y_true: list of array, shape like yolo_outputs, xywh are reletive value
"""
assert (
true_boxes[..., 4] < num_classes
).all(), "class id must be less than num_classes"
num_layers = len(anchors) // 3 # default setting
anchor_mask = (
[[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
)
true_boxes = np.array(true_boxes, dtype="float32")
input_shape = np.array(input_shape, dtype="int32")
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]
m = true_boxes.shape[0]
grid_shapes = [input_shape // {0: 32, 1: 16, 2: 8}[l] for l in range(num_layers)]
y_true = [
np.zeros(
(
m,
grid_shapes[l][0],
grid_shapes[l][1],
len(anchor_mask[l]),
5 + num_classes,
),
dtype="float32",
)
for l in range(num_layers)
]
# Expand dim to apply broadcasting.
anchors = np.expand_dims(anchors, 0)
anchor_maxes = anchors / 2.0
anchor_mins = -anchor_maxes
valid_mask = boxes_wh[..., 0] > 0
for b in range(m):
# Discard zero rows.
wh = boxes_wh[b, valid_mask[b]]
if len(wh) == 0:
continue
# Expand dim to apply broadcasting.
wh = np.expand_dims(wh, -2)
box_maxes = wh / 2.0
box_mins = -box_maxes
intersect_mins = np.maximum(box_mins, anchor_mins)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.0)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
# Find best anchor for each true box
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
for l in range(num_layers):
if n in anchor_mask[l]:
i = np.floor(true_boxes[b, t, 0] * grid_shapes[l][1]).astype(
"int32"
)
j = np.floor(true_boxes[b, t, 1] * grid_shapes[l][0]).astype(
"int32"
)
k = anchor_mask[l].index(n)
c = true_boxes[b, t, 4].astype("int32")
y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4]
y_true[l][b, j, i, k, 4] = 1
y_true[l][b, j, i, k, 5 + c] = 1
return y_true
def box_iou(b1, b2):
"""Return iou tensor
Parameters
----------
b1: tensor, shape=(i1,...,iN, 4), xywh
b2: tensor, shape=(j, 4), xywh
Returns
-------
iou: tensor, shape=(i1,...,iN, j)
"""
# Expand dim to apply broadcasting.
b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh / 2.0
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# Expand dim to apply broadcasting.
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh / 2.0
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.0)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
def yolo_loss(args, anchors, num_classes, ignore_thresh=0.5, print_loss=False):
"""Return yolo_loss tensor
Parameters
----------
yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
y_true: list of array, the output of preprocess_true_boxes
anchors: array, shape=(N, 2), wh
num_classes: integer
ignore_thresh: float, the iou threshold whether to ignore object confidence loss
Returns
-------
loss: tensor, shape=(1,)
"""
num_layers = len(anchors) // 3 # default setting
yolo_outputs = args[:num_layers]
y_true = args[num_layers:]
anchor_mask = (
[[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
)
input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
grid_shapes = [
K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0]))
for l in range(num_layers)
]
loss = 0
m = K.shape(yolo_outputs[0])[0] # batch size, tensor
mf = K.cast(m, K.dtype(yolo_outputs[0]))
for l in range(num_layers):
object_mask = y_true[l][..., 4:5]
true_class_probs = y_true[l][..., 5:]
grid, raw_pred, pred_xy, pred_wh = yolo_head(
yolo_outputs[l],
anchors[anchor_mask[l]],
num_classes,
input_shape,
calc_loss=True,
)
pred_box = K.concatenate([pred_xy, pred_wh])
# Darknet raw box to calculate loss.
raw_true_xy = y_true[l][..., :2] * grid_shapes[l][::-1] - grid
raw_true_wh = K.log(
y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1]
)
raw_true_wh = K.switch(
object_mask, raw_true_wh, K.zeros_like(raw_true_wh)
) # avoid log(0)=-inf
box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]
# Find ignore mask, iterate over each of batch.
ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
object_mask_bool = K.cast(object_mask, "bool")
def loop_body(b, ignore_mask):
true_box = tf.boolean_mask(
y_true[l][b, ..., 0:4], object_mask_bool[b, ..., 0]
)
iou = box_iou(pred_box[b], true_box)
best_iou = K.max(iou, axis=-1)
ignore_mask = ignore_mask.write(
b, K.cast(best_iou < ignore_thresh, K.dtype(true_box))
)
return b + 1, ignore_mask
_, ignore_mask = K.control_flow_ops.while_loop(
lambda b, *args: b < m, loop_body, [0, ignore_mask]
)
ignore_mask = ignore_mask.stack()
ignore_mask = K.expand_dims(ignore_mask, -1)
# K.binary_crossentropy is helpful to avoid exp overflow.
xy_loss = (
object_mask
* box_loss_scale
* K.binary_crossentropy(raw_true_xy, raw_pred[..., 0:2], from_logits=True)
)
wh_loss = (
object_mask
* box_loss_scale
* 0.5
* K.square(raw_true_wh - raw_pred[..., 2:4])
)
confidence_loss = (
object_mask
* K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)
+ (1 - object_mask)
* K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)
* ignore_mask
)
class_loss = object_mask * K.binary_crossentropy(
true_class_probs, raw_pred[..., 5:], from_logits=True
)
xy_loss = K.sum(xy_loss) / mf
wh_loss = K.sum(wh_loss) / mf
confidence_loss = K.sum(confidence_loss) / mf
class_loss = K.sum(class_loss) / mf
loss += xy_loss + wh_loss + confidence_loss + class_loss
if print_loss:
loss = tf.Print(
loss,
[
loss,
xy_loss,
wh_loss,
confidence_loss,
class_loss,
K.sum(ignore_mask),
],
message="loss: ",
)
return loss