-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomparison.py
606 lines (532 loc) · 24.7 KB
/
comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import pypesto
import re
from scipy.stats import pearsonr
from evaluate import (
load_results, get_num_converged_per_grad, get_num_converged,
ANALYSIS_ALGOS, ALGO_PALETTES, ALGO_COLORS, CONVERGENCE_THRESHOLDS,
OPTIMIZER_FORWARD
)
from compile_petab import load_problem
from benchmark import set_solver_model_options
MODELS = [
'Bachmann_MSB2011', 'Beer_MolBioSystems2014', 'Boehm_JProteomeRes2014',
'Brannmark_JBC2010', 'Bruno_JExpBot2016', 'Crauste_CellSystems2017',
'Fiedler_BMC2016', 'Fujita_SciSignal2010', 'Isensee_JCB2018',
'Lucarelli_CellSystems2018', 'Schwen_PONE2014', 'Weber_BMC2015',
'Zheng_PNAS2012'
]
def get_unique_starts_at_boundary(pars, lb, ub):
return len(
np.unique([
str(sorted(np.where(np.isclose(par, lb, atol=1e-2, rtol=0.0)
| np.isclose(par, ub, atol=1e-2, rtol=0.0))))
for par in pars
if par is not None
])
)
def get_number_boundary_optima(pars, iters, grads, lb, ub):
return sum([
n_iter > 0 and (
np.isclose(par, lb, atol=1e-2, rtol=0.0).any() or
np.isclose(par, ub, atol=1e-2, rtol=0.0).any()
) and
np.linalg.norm(grad[np.where(
np.isclose(par, lb, atol=1e-2, rtol=0.0) |
np.isclose(par, ub, atol=1e-2, rtol=0.0)
)]) ** 2 / np.linalg.norm(grad) ** 2 > 0.9
for par, n_iter, grad in zip(pars, iters, grads)
if par is not None and grad is not None
])
OPTIMIZERS = OPTIMIZER_FORWARD + ['fmincon', 'lsqnonlin']
if __name__ == '__main__':
pd.set_option('max_columns', None)
pd.set_option('max_rows', None)
new_rc_params = {
"font.family": 'Helvetica',
"pdf.fonttype": 42,
'ps.fonttype': 42,
'svg.fonttype': 'none',
}
mpl.rcParams.update(new_rc_params)
all_results = []
hdf_key = 'results'
hdf_file = os.path.join('evaluation', 'comparison.h5')
if not os.path.exists(hdf_file):
for model in MODELS:
petab_problem, problem = load_problem(model)
if isinstance(problem.objective, pypesto.AmiciObjective):
objective = problem.objective
else:
objective = problem.objective._objectives[0]
set_solver_model_options(objective.amici_solver,
objective.amici_model)
for optimizer in OPTIMIZERS:
try:
result = load_results(model, optimizer, '1000')
except (FileNotFoundError, IOError) as err:
print(f'Failed loading: {err}')
continue
ebound_option = next((
option
for option in optimizer.split('.')
if option.startswith('ebounds=')
), None)
if ebound_option is not None:
ebound = float(ebound_option.split('=')[1])
ubs = np.asarray([
ub + np.log10(ebound) if scale == 'log10'
else ub * ebound
for ub, scale in zip(
problem.ub_full, problem.x_scales
)
])
lbs = np.asarray([
lb - np.log10(ebound) if scale == 'log10'
else lb * ebound
for lb, scale in zip(
problem.lb_full, problem.x_scales
)
])
else:
ubs = problem.ub_full
lbs = problem.lb_full
n_iter = np.asarray(
result.optimize_result.get_for_key('n_grad')
) + np.asarray(
result.optimize_result.get_for_key('n_sres')
)
all_results.append({
'model': model.split('_')[0],
'optimizer': optimizer,
'iter': n_iter,
'ids': result.optimize_result.get_for_key('id'),
'fvals': result.optimize_result.get_for_key('fval'),
'unique_at_boundary': get_unique_starts_at_boundary(
result.optimize_result.get_for_key('x'),
lbs, ubs
),
'boundary_minima': get_number_boundary_optima(
result.optimize_result.get_for_key('x'),
n_iter,
result.optimize_result.get_for_key('grad'),
lbs, ubs
),
})
results = pd.DataFrame(all_results)
results['fmin'] = results['fvals'].apply(np.nanmin)
results.to_hdf(hdf_file, hdf_key)
else:
results = pd.read_hdf(hdf_file, hdf_key)
for threshold in CONVERGENCE_THRESHOLDS:
print(f'\n==== Threshold: {threshold} ====')
ref_algos = {
'GN': 'fides.subspace=2D'
if threshold != CONVERGENCE_THRESHOLDS[0]
else 'fides.subspace=2D.hessian=FIMe',
'BFGS': 'fides.subspace=2D.hessian=BFGS',
'SR1': 'fides.subspace=2D.hessian=SR1',
}
for model in MODELS:
mrows = results.model == model.split('_')[0]
def has_ebounds(optimizer):
return any(
option.startswith('ebounds=')
for option in optimizer.split('.')
)
fmin_model = results.loc[
mrows & np.logical_not(results.optimizer.apply(has_ebounds)),
'fmin'
].min()
results.loc[mrows, 'conv count'] = results.loc[mrows, :].apply(
lambda x:
get_num_converged(x.fvals,
fmin_model if not has_ebounds(x.optimizer)
else min(x.fmin, fmin_model),
threshold),
axis=1
)
results.loc[mrows, 'perf'] = results.loc[mrows, :].apply(
lambda x:
get_num_converged_per_grad(x.fvals, x.iter,
fmin_model if not has_ebounds(
x.optimizer)
else min(x.fmin, fmin_model),
threshold), axis=1
)
results.loc[mrows, 'best performer'] = \
results.loc[mrows, 'perf'] > \
results.loc[mrows, 'perf'].max() * 0.85
results['conv rate'] = results.iter.apply(
lambda x: 1 / np.sum(x) if np.sum(x) > 0 else np.nan
)
perfs = ['perf', 'conv rate', 'conv count']
# compute improvement compared to ref algo
improvements = []
for ref_name, ref_algo in ref_algos.items():
if np.any(mrows & (results.optimizer == ref_algo)):
for perf in perfs:
ref_val = results.loc[
mrows & (results.optimizer == ref_algo), perf
].values[0]
val = results.loc[mrows, perf] / ref_val
results.loc[mrows, f'improvement ({ref_name}) {perf}']\
= val
opt_ids = {
opt: results.loc[mrows & (results.optimizer == opt),
'ids'].values[0]
for opt in results[mrows].optimizer.unique()
}
conv_counts = {
opt: int(results.loc[
mrows & (results.optimizer == opt), 'conv count'
].values[0])
for opt in results[mrows].optimizer.unique()
}
ref_conv_ids = set(
opt_ids[ref_algo][:conv_counts[ref_algo]]
)
for opt in results[mrows].optimizer.unique():
opt_conv_ids = set(opt_ids[opt][:conv_counts[opt]])
n_min = min(len(opt_conv_ids), len(ref_conv_ids))
results.loc[mrows & (results.optimizer == opt),
f'overlap ({ref_name})'] = len(
opt_conv_ids.intersection(ref_conv_ids)
) / n_min if n_min > 0 else 0.0
else:
print(f'No results for {ref_algo} for {model}')
for ref in ref_algos.keys():
for perf in perfs:
if f'improvement ({ref}) {perf}' in results:
for optimizer in results.optimizer.unique():
val = 10 ** results.loc[
results.optimizer == optimizer,
f'improvement ({ref}) {perf}'
].apply(np.log10).mean()
results.loc[results.optimizer == optimizer,
f'average improvement ({ref}) {perf}'] =\
val
if f'overlap ({ref})' in results:
for optimizer in results.optimizer.unique():
sel = results.optimizer == optimizer
results.loc[sel, f'average overlap ({ref})'] = \
results.loc[sel, f'overlap ({ref})'].mean()
results.drop(columns=['fvals', 'iter', 'ids']).to_csv(
os.path.join('evaluation', f'comparison_{threshold}.csv')
)
df = pd.melt(results, id_vars=['model', 'optimizer'],
value_vars=['unique_at_boundary', 'boundary_minima',
'conv count'])
for analysis, algos in ANALYSIS_ALGOS.items():
if threshold == CONVERGENCE_THRESHOLDS[0]:
algos = [a if a != 'fides.subspace=2D' else
'fides.subspace=2D.hessian=FIMe'
for a in algos if a != 'random']
df_analysis = df[df.optimizer.isin(algos)]
results_analysis = results[results.optimizer.isin(algos)].copy()
if analysis != 'matlab':
stats = pd.read_csv(os.path.join('evaluation',
f'stats_{analysis}.csv'))
stat_columns = [
stat for stat in stats.columns
if stat not in ['model', 'optimizer', 'converged', 'iter']
]
for _, row in stats.iterrows():
for stat in stat_columns:
results_analysis.loc[
(results_analysis.model == row.model) &
(results_analysis.optimizer == row.optimizer),
stat
] = row[stat]
else:
stat_columns = []
overlaps = [f'overlap ({ref})' for ref in ref_algos.keys()]
for ref_name, ref_algo in ref_algos.items():
if analysis not in ['curv', 'hybridB'] and ref_name != 'GN':
continue
if analysis == 'hybridB' and ref_name == 'SR1':
continue
for model in MODELS:
mrows = results_analysis.model == model.split('_')[0]
for stat in stat_columns:
ref_val = results_analysis.loc[
mrows & (results_analysis.optimizer == ref_algo),
stat
].values[0]
results_analysis.loc[mrows,
f'change ({ref_name}) {stat}'] = \
results_analysis.loc[mrows, stat] - ref_val
palette = ALGO_PALETTES[analysis]
for ref, ref_algo in ref_algos.items():
for perf in perfs:
for opt in results_analysis.optimizer.unique():
if opt == ref_algos['GN']:
continue
results_opt = results_analysis.loc[
results_analysis.optimizer == opt, :
]
values = results_opt[f'improvement ({ref}) {perf}']
better_than_ref = results_opt[values > 1.15]
similar_to_ref = results_opt[(values < 1.15) &
(values > 0.85)]
worse_than_ref = results_opt[(values < 0.85) &
(values > 0.0)]
failed = results_opt[(values < 0.01)]
worked = results_opt[(values > 0.01)]
best_performer = results_opt[
results_opt['best performer']
]
evaluations = [
(f'had better {perf}', better_than_ref),
(f'had similar {perf}', similar_to_ref),
(f'had worse {perf}', worse_than_ref),
]
if perf == 'perf':
evaluations += [
('worked', worked),
('failed', failed),
('was best performer', best_performer)
]
for predicate, frame in evaluations:
models = ", ".join([
f"\\textit{{{model}}}" for model in frame.model
])
if frame.empty:
continue
ps = frame[f"improvement ({ref}) {perf}"]
pmin = ps.min()
pmax = ps.max()
pmean = ps.mean()
print(
f'{opt} {predicate} than {ref_algo} on'
f' {len(frame)} problems '
f'({pmin:.2f} to {pmax:.2f} fold change;'
f' {pmean:.2f} average; {models})'
)
# conv counts plot
g = sns.FacetGrid(
data=df_analysis, row='variable',
sharex=True, sharey=True,
height=3, aspect=2,
)
g.map_dataframe(sns.barplot, x='model', y='value',
hue='optimizer', hue_order=algos,
palette=palette, bottom=1e0)
g.set(yscale='log', ylim=(10**0.5, 10**3.5))
for ax in g.axes.ravel():
ax.set_xticklabels(ax.get_xticklabels(),
rotation=45, ha='right')
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation', f'comparison_{analysis}_{threshold}_counts.pdf'
))
# performance plot
plt.figure(figsize=(9, 4))
g = sns.barplot(
data=results_analysis,
x='model', y='perf', hue='optimizer', hue_order=algos,
palette=palette,
bottom=1e-7,
)
g.set_xticklabels(g.get_xticklabels(), rotation=45, ha='right')
g.set(yscale='log', ylim=(1e-7, 1e-1))
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation',
f'comparison_{analysis}_{threshold}_perf.pdf'
))
# similarity plot
plt.figure(figsize=(9, 4))
g = sns.barplot(
data=results_analysis, hue_order=algos, palette=palette,
x='model', hue='optimizer', y='overlap (GN)'
)
g.set_xticklabels(g.get_xticklabels(), rotation=45, ha='right')
g.set(yscale='linear', ylim=[0, 1])
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation',
f'comparison_{analysis}_{threshold}_overlap.pdf'
))
# iter plot
df_iter = pd.DataFrame(
[(d, tup.model, tup.optimizer)
for tup in results_analysis.itertuples()
for d in tup.iter],
columns=['iter', 'model', 'optimizer']
)
df_iter.iter = df_iter.iter.apply(np.log10)
plt.figure(figsize=(9, 4))
g = sns.boxplot(
data=df_iter, hue_order=algos, palette=palette,
x='model', hue='optimizer', y='iter'
)
g.set_xticklabels(g.get_xticklabels(), rotation=45, ha='right')
g.set_ylim([-0.5, 5.5])
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation', f'comparison_{analysis}_iter.pdf'
))
stat_changes = [
f'change ({ref}) {stat}'
for stat in stat_columns
for ref in ref_algos.keys()
]
stat_changes = [change for change in stat_changes
if change in results_analysis.columns]
# decompose perf change into convergence count + iteration
group_vars = ['model', 'optimizer']
improvements_perfs = [
f'improvement ({ref}) {perf}' for perf in perfs
for ref in ref_algos.keys()
]
improvements_perfs = [imp for imp in improvements_perfs
if imp in results_analysis.columns]
for imp in improvements_perfs:
results_analysis[imp] = \
results_analysis[imp].apply(np.log10)
results_analysis.loc[results_analysis[imp] < -2, imp] = -2
results_analysis.loc[results_analysis[imp] > 2, imp] = 2
df_improvement = pd.melt(
results_analysis,
id_vars=group_vars,
value_vars=improvements_perfs,
var_name='improvement var',
value_name='improvement'
)
g = sns.FacetGrid(
data=df_improvement, row='improvement var',
row_order=[
f'improvement (GN) {perf}' for perf in perfs
],
height=2, aspect=3,
)
g.axes[0, 0].axhline(np.log10(1.15), color='k', linestyle='--')
g.axes[0, 0].axhline(np.log10(0.85), color='k', linestyle='--')
g.map_dataframe(
sns.barplot, x='model', y='improvement',
hue='optimizer', hue_order=algos, palette=palette,
)
g.set(ylim=[-2, 2])
g.axes[-1, 0].set_xticklabels(g.axes[-1, 0].get_xticklabels(),
rotation=45, ha='right')
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation',
f'comparison_{analysis}_{threshold}_improvement_decomp.pdf'
))
for perf in perfs:
results_analysis[perf] = results_analysis[perf].apply(np.log10)
results_analysis.loc[results_analysis[perf] < -7, perf] = -7
for col_type, cols in zip(['stat', 'change', 'overlap'],
[stat_columns, stat_changes, overlaps]):
if not cols:
continue
for opt in results_analysis.optimizer.unique():
data = results_analysis[results_analysis.optimizer == opt]
if threshold == CONVERGENCE_THRESHOLDS[0]:
if opt == 'fides.subspace=2D.hessian=FIMe':
# only changes color & skipping
opt = 'fides.subspace=2D'
for x in cols:
for y in perfs + improvements_perfs:
points = data.dropna(subset=[x, y])
if points.empty:
continue
r, p = pearsonr(points[x], points[y])
if np.isnan(p) or p > 0.05:
continue
if analysis == 'curv':
if (x.startswith('change (GN)') or
y.startswith('improvement (GN)')) and (
opt not in [
'fides.subspace=full',
'fides.subspace=2D.hessian=BFGS',
'fides.subspace=2D.hessian=SR1',
]
):
continue
if (x.startswith('change (BFGS)') or
y.startswith('improvement (BFGS)')) and (
opt not in [
'fides.subspace=full.hessian=BFGS',
'fides.subspace=2D.hessian=SR1',
]
):
continue
if (x.startswith('change (SR1)') or
y.startswith('improvement (SR1)')) and (
opt not in [
'fides.subspace=full.hessian=SR1',
'fides.subspace=2D.hessian=BFGS',
]
):
continue
if analysis in ['curv', 'hybridB']:
my = re.match(r'improvement \(([\w]+)\)', y)
mx = re.match(r'change \(([\w]+)\)', x)
if mx and my and mx.group(1) != my.group(1):
continue
plt.figure(figsize=(4, 4))
g = sns.regplot(
data=points, x=x, y=y,
color=ALGO_COLORS[analysis][opt]
)
g.text(.05, .8, f'r={r:.2f}, p={p:.2e}',
transform=g.transAxes)
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation',
f'comparison_{analysis}_{threshold}_'
f'{opt}_{x}_vs_{y}.pdf'
))
df_plot = pd.melt(
results_analysis,
id_vars=group_vars + perfs + improvements_perfs,
value_vars=cols,
var_name=f'{col_type} var',
value_name=col_type
)
if col_type == 'change':
if analysis == 'curv':
df_plot = df_plot[
df_plot[f'{col_type} var'].apply(
lambda x: x.startswith('change (GN)')
) & (
(df_plot.optimizer ==
'fides.subspace=2D.hessian=BFGS') |
(df_plot.optimizer ==
'fides.subspace=2D.hessian=SR1')
)
]
else:
df_plot = df_plot[
df_plot.optimizer != ref_algos['GN']
]
else:
data = results_analysis
data = pd.melt(
df_plot,
value_vars=perfs + improvements_perfs,
id_vars=[f'{col_type} var', col_type] + group_vars,
).dropna(subset=['value', col_type])
if data.empty:
continue
g = sns.lmplot(
data=data,
sharex=False, sharey=False,
row=f'{col_type} var', col='variable',
x=col_type, y='value',
hue='optimizer', hue_order=algos, palette=palette,
)
plt.tight_layout()
plt.savefig(os.path.join(
'evaluation',
f'comparison_{analysis}_{threshold}_'
f'{col_type}_vs_perf.pdf'
))