-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrandom_process.py
88 lines (70 loc) · 2.93 KB
/
random_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import division
import numpy as np
class RandomProcess(object):
def reset_states(self):
pass
class AnnealedGaussianProcess(RandomProcess):
def __init__(self, mu, sigma, sigma_min, n_steps_annealing):
self.mu = mu
self.sigma = sigma
self.n_steps = 0
if sigma_min is not None:
self.m = -float(sigma - sigma_min) / float(n_steps_annealing)
self.c = sigma
self.sigma_min = sigma_min
else:
self.m = 0.
self.c = sigma
self.sigma_min = sigma
@property
def current_sigma(self):
sigma = max(self.sigma_min, self.m * float(self.n_steps) + self.c)
return sigma
class GaussianWhiteNoiseProcess(AnnealedGaussianProcess):
def __init__(self, mu=0., sigma=1., sigma_min=None, n_steps_annealing=1000, size=1):
super(GaussianWhiteNoiseProcess, self).__init__(mu=mu, sigma=sigma, sigma_min=sigma_min, n_steps_annealing=n_steps_annealing)
self.size = size
def sample(self):
sample = np.random.normal(self.mu, self.current_sigma, self.size)
self.n_steps += 1
return sample
# Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OrnsteinUhlenbeckProcess(AnnealedGaussianProcess):
def __init__(self, theta, mu=0., sigma=1., dt=1e-2, x0=None, size=1, sigma_min=None, n_steps_annealing=1000):
super(OrnsteinUhlenbeckProcess, self).__init__(mu=mu, sigma=sigma, sigma_min=sigma_min, n_steps_annealing=n_steps_annealing)
self.theta = theta
self.mu = mu
self.dt = dt
self.x0 = x0
self.size = size
self.reset_states()
def sample(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.current_sigma * np.sqrt(self.dt) * np.random.normal(size=self.size)
self.x_prev = x
self.n_steps += 1
return x
def reset_states(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros(self.size)
class RandomActivation(object):
def __init__(self, size=18, reps_min=1, reps_max=3, min_miscles=1, max_muscles=None):
self.size = size
self.reps_min = reps_min
self.reps_max = reps_max
self.min_miscles = min_miscles
self.max_muscles = size if max_muscles is None else min(size, max_muscles)
self.all_muscles = np.arange(size)
self.x = np.zeros(18)
self.counter = 0
def sample(self):
if self.counter == 0:
self.counter = np.random.randint(self.reps_min, self.reps_max+1)
num_muscles = np.random.randint(self.min_miscles, self.max_muscles+1)
muscles = np.random.choice(self.all_muscles, num_muscles, replace=False)
self.x.fill(0)
self.x[muscles] = 1
self.counter -= 1
return self.x
def reset_states(self):
self.counter = 0
self.x.fill(0)