Skip to content

Latest commit

 

History

History
60 lines (50 loc) · 2.1 KB

README.md

File metadata and controls

60 lines (50 loc) · 2.1 KB

This repository provides utility functions to prepare and use the SINS database in python. It also provides the source code for sound activity detection (SAD) and sound event classification (SEC) systems.

If you are using code or results of SAD or SEC please cite the following paper:

@InProceedings{ebbers2019weakly,
  author    = {Ebbers, Janek and Drude, Lukas and Brendel, Andreas and Kellermann, Walter and Haeb-Umbach Reinhold},
  title     = {Weakly Supervised Sound Activity Detection and Event Classification in Acoustic Sensor Networks},
  booktitle = {{IEEE} {International} {Workshop} on {Computational} {Advances} in {Multi}-{Sensor} {Adaptive} {Processing} ({CAMSAP})},
  year      = {2019},
  address   = {Guadeloupe, West Indies},
  month     = dec
}

If you are using the SINS database please cite the following paper:

@InProceedings{dekkers2017sins,
  author    = {Dekkers, G. and Lauwereins, S. and Thoen, B. and Adhana, M. W. and Brouckxon, H. and van Waterschoot, T. and Vanrumste, B. and Verhelst, M. and Karsmakers, P.},
  title     = {The {SINS} database for detection of daily activities in a home environment using an acoustic sensor network},
  booktitle = {Proceedings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017)},
  year      = {2017},
  pages     = {32--36},
}

Installation

Install requirements

$ pip install --user git+https://github.com/fgnt/lazy_dataset.git@ec06c1e8ff4ccb09420d2d641db8f6d9b1099a4f
$ pip install --user git+https://github.com/fgnt/paderbox.git@7b3b4e9d00e07664596108f987292b8c78d846b1
$ pip install --user git+https://github.com/fgnt/padertorch.git@88233a0c33ddcc33a6842a5f8dc6c24df84d9f09

Clone the repo

$ git clone https://github.com/fgnt/sins.git
$ cd sins

Install this package

$ pip install --user -e .

Download the database

$ export SINS_DB_DIR=/desired/path/to/sins
$ python -m sins.database.download

Create database description json

$ python -m sins.database.create_json

Notebooks

See jupyter notebooks in the directory notebooks/ for usage examples.