-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
247 lines (192 loc) · 7.43 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
from cvxpy import *
def distance(x1, x2, d_max):
"""
returns the euclidean distance between two points x1 and x2
Inputs:
d_max: maximum distance between any two data points in dataset
"""
return np.linalg.norm(x1-x2)/d_max
def violated_pairs(y_pred, X_data, delta, d_max):
"""
returns a list of index pairs for which the constraints are violated
Inputs:
y_pred: a vector of predicted outputs
X_data: the data points from whcih y_pred was predicted
delta: amount by which we allow violation of the constraints
d_max: maximum distance between any two data points in dataset
"""
pair_list = []
n = y_pred.shape[0]
assert(X_data.shape[0] == n)
for i in range(n):
for j in range(i+1, n):
if np.absolute(y_pred[i] - y_pred[j]) \
> (delta + distance(X_data[i, :], X_data[j, :], d_max)):
pair_list.append((i, j))
return pair_list
def num_Dwork_violation(y_pred, X_data, delta, d_max):
"""
returns the number of violated constraints
Inputs:
y_pred: a vector of predicted outputs
X_data: the data points from whcih y_pred was predicted
delta: amount by which we allow violation of the constraints
d_max: maximum distance between any two data points in dataset
"""
count = 0
n = y_pred.shape[0]
assert(X_data.shape[0] == n)
for i in range(n):
for j in range(i+1, n):
if np.absolute(y_pred[i] - y_pred[j]) \
> delta + distance(X_data[i, :], X_data[j, :], d_max):
count += 1
return count
def avg_Dwork_violation(y_pred, X_data, delta, d_max):
"""
returns the average amount by which the constraints are violated
Inputs:
y_pred: a vector of predicted outputs
X_data: the data points from whcih y_pred was predicted
delta: amount by which we allow violation of the constraints
d_max: maximum distance between any two data points in dataset
"""
violation_sum = 0
n = y_pred.shape[0]
assert(X_data.shape[0] == n)
for i in range(n):
for j in range(i+1, n):
violation_sum += np.maximum(0, np.absolute(y_pred[i] - y_pred[j]) -
delta - distance(X_data[i, :],
X_data[j, :],
d_max))
return 2*violation_sum/(n*(n-1))
def ge2(y_pred, y_actual):
"""
returns the generalized entropy
(https://people.mpi-sws.org/~tspeicher/papers/inequality_indices.pdf)
for alpha = 2
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
"""
benefit = (0.25 * np.multiply((y_actual + 1), (y_pred + 1)) +
0.125 * np.multiply((1 - y_actual), (y_pred + 5)))
mu = np.average(benefit)
return 0.5 * np.average(np.power(benefit/mu, 2)) - 0.5
def atk(y_pred, y_actual, alpha):
"""
returns the Atkinson's Index
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
alpha: parameter for the Atkinson's Index
"""
n = y_pred.shape[0]
benefit = (0.25 * np.multiply((y_actual + 1), (y_pred + 1)) +
0.125 * np.multiply((1 - y_actual), (y_pred + 5)))
mu = np.average(benefit)
if alpha == 0:
return 1 - (np.prod(np.power(benefit, (1/n))))/mu
elif alpha < 1:
return 1 - (np.average(np.power(benefit, alpha))**(1/alpha))/mu
else:
print('Dont use this function with alpha > 1')
return 0
def avg_utility2(y_pred, y_actual, alpha):
"""
returns the average utility of the predictions assiciated with y_pred
for the actual labels in y_actual. This is the cvx compatible version.
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
alpha: parameter to the utility function
"""
n = y_actual.shape[0]
benefit = 2 + (0.25 * mul_elemwise((y_actual + 1), (y_pred + 1)) +
0.125 * mul_elemwise((1 - y_actual), (y_pred + 5)))
s = sum_entries(np.sign(alpha)* power(benefit, alpha))
return s/n
def eval_util2(y_pred, y_actual, alpha):
"""
returns the average utility of the predictions assiciated with y_pred
for the actual labels in y_actual. This version cannot be used as input
to the cvx solver, use this in all other cases though.
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
alpha: parameter to the utility function
"""
n = y_actual.shape[0]
benefit = 2 + (0.25 * np.multiply((y_actual + 1), (y_pred + 1)) +
0.125 * np.multiply((1 - y_actual), (y_pred + 5)))
s = sum(np.sign(alpha) * np.power(benefit, alpha))
return s/n
def avg_utility(y_pred, y_actual, alpha):
"""
returns the average utility of the predictions assiciated with y_pred
for the actual labels in y_actual. This is the cvx compatible version.
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
alpha: parameter to the utility function
"""
n = y_actual.shape[0]
benefit = (0.25 * mul_elemwise((y_actual + 1), (y_pred + 1)) +
0.125 * mul_elemwise((1 - y_actual), (y_pred + 5)))
s = sum_entries(np.sign(alpha)* power(benefit, alpha))
return s/n
def eval_util(y_pred, y_actual, alpha):
"""
returns the average utility of the predictions assiciated with y_pred
for the actual labels in y_actual. This version cannot be used as input
to the cvx solver, use this in all other cases though.
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
alpha: parameter to the utility function
"""
n = y_actual.shape[0]
benefit = (0.25 * np.multiply((y_actual + 1), (y_pred + 1)) +
0.125 * np.multiply((1 - y_actual), (y_pred + 5)))
s = sum(np.sign(alpha) * np.power(benefit, alpha))
return s/n
def avg_benefit(y_pred, y_actual):
"""
returns the average benefit of the predictions assiciated with y_pred
for the actual labels in y_actual. This is the cvx compatible version.
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
"""
n = y_actual.shape[0]
benefit = (0.25 * mul_elemwise((y_actual + 1), (y_pred + 1)) +
0.125 * mul_elemwise((1 - y_actual), (y_pred + 5)))
return sum_entries(benefit)/n
def eval_benefit(y_pred, y_actual):
"""
returns the average benefit of the predictions assiciated with y_pred
for the actual labels in y_actual. This version cannot be used as input
to the cvx solver, use this in all other cases though.
Inputs:
y_pred: vector of predicted outputs
y_actual: vector of actual labels
"""
n = y_actual.shape[0]
benefit = (0.25 * np.multiply((y_actual + 1), (y_pred + 1)) +
0.125 * np.multiply((1 - y_actual), (y_pred + 5)))
return np.sum(benefit)/n
def min_benefit(y_pred, y_actual):
#assert(y_pred.shape[0] == y.shape[0])
n = y_actual.shape[0]
benefit = (0.25 * mul_elemwise((y_actual + 1), (y_pred + 1)) +
0.125 * mul_elemwise((1 - y_actual), (y_pred + 5)))
s = min_entries(benefit)
return s
def eval_min_benefit(y_pred, y_actual):
n = y_actual.shape[0]
benefit = (0.25 * np.multiply((y_actual + 1), (y_pred + 1)) +
0.125 * np.multiply((1 - y_actual), (y_pred + 5)))
s = min(benefit)
return s