diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index 2054b410b..8489e2e41 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/.doctrees/nbsphinx/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb b/.doctrees/nbsphinx/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb index c03b3390e..1aa0d131b 100644 --- a/.doctrees/nbsphinx/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb +++ b/.doctrees/nbsphinx/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "57d2f34e", + "id": "6eaa90fc", "metadata": {}, "source": [ "# Surface tension using PC-SAFT Helmholtz energy functionals\n", @@ -16,7 +16,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "86bac6ea", + "id": "5453eb60", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "0a780f0f", + "id": "608e7571", "metadata": {}, "source": [ "### Water parameters for PC-SAFT \n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "b90e1b36", + "id": "c315e36f", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ }, { "cell_type": "markdown", - "id": "5f643fda", + "id": "14bcceae", "metadata": {}, "source": [ "Let's first compute the critical point. We will make use of the critical temperature later." @@ -72,7 +72,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "79a4acd4", + "id": "e9bbc9ad", "metadata": {}, "outputs": [ { @@ -98,7 +98,7 @@ }, { "cell_type": "markdown", - "id": "dc2bc784", + "id": "edc07748", "metadata": {}, "source": [ "As you can see, the model overestimates the critical temperature." @@ -106,7 +106,7 @@ }, { "cell_type": "markdown", - "id": "04b742a2", + "id": "af9bcf34", "metadata": {}, "source": [ "## Surface tension for single VLE\n", @@ -120,7 +120,7 @@ }, { "cell_type": "markdown", - "id": "ac3b4a7e", + "id": "179713cb", "metadata": {}, "source": [ "For the VLE, we use the `PhaseEquilibrium.pure` method. Here for $T = 300$ Kelvin." @@ -129,7 +129,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "8a9905c1", + "id": "0b468d2b", "metadata": {}, "outputs": [ { @@ -157,7 +157,7 @@ }, { "cell_type": "markdown", - "id": "38599388", + "id": "1b881367", "metadata": {}, "source": [ "Next, we initialize the density profile. For the surface tension, a 1D DFT calculation in Cartesian coordinates is conducted. Thus, the density profile will be an 1D array (we have a single substance). \n", @@ -172,7 +172,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "b26dbe62", + "id": "399fbb66", "metadata": {}, "outputs": [ { @@ -197,7 +197,7 @@ }, { "cell_type": "markdown", - "id": "0fc6a77e", + "id": "de4316a9", "metadata": {}, "source": [ "The above method does not yet run a calculation. If we try to extract the surface tension, it will return `None`. Let's store the initial density profile for a later comparison." @@ -206,7 +206,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "44c9964e", + "id": "829b8d3f", "metadata": {}, "outputs": [ { @@ -226,7 +226,7 @@ }, { "cell_type": "markdown", - "id": "d867a8db", + "id": "8f12f7c8", "metadata": {}, "source": [ "To calculate the equilibrium density profile, we have to call the `solve()` method:" @@ -235,7 +235,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "5e009559", + "id": "503f3720", "metadata": {}, "outputs": [ { @@ -254,7 +254,7 @@ }, { "cell_type": "markdown", - "id": "dd020faa", + "id": "a0b9f9e5", "metadata": {}, "source": [ "`solve()` calculates the equilibrium density profile and returns the `PlanarInterface` object so that we can readily extract the `surface_tension`.\n", @@ -265,7 +265,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "9e2b28ac", + "id": "e427c205", "metadata": {}, "outputs": [ { @@ -294,7 +294,7 @@ }, { "cell_type": "markdown", - "id": "05ffa7f3", + "id": "50bd3642", "metadata": {}, "source": [ "## Comparison to NIST data using `SurfaceTensionDiagram`\n", @@ -305,7 +305,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "beca7f1f", + "id": "1d5a8f6e", "metadata": {}, "outputs": [ { @@ -543,7 +543,7 @@ }, { "cell_type": "markdown", - "id": "761c9b2f", + "id": "fae7ce1d", "metadata": {}, "source": [ "For the `SurfaceTensionDiagram`, we need to provide the VLE's. We compute those using the `PhaseDiagram` object (here for 50 temperatures between 275 Kelvin and the critical temperature) from which we get a list of `PhaseEquilibrium`s via the `states` filed. The `SurfaceTensionDiagram` is nice, because we can reuse equilibrium density profiles from prior iterations as input for the next iteration. It's therefore typically faster and more stable than an \"naive\" implementation by hand.\n", @@ -554,7 +554,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "407efd68", + "id": "0dae8c6f", "metadata": {}, "outputs": [ { @@ -584,7 +584,7 @@ }, { "cell_type": "markdown", - "id": "f5b67e43", + "id": "2f4f60b4", "metadata": {}, "source": [ "We now can extract all surface tensions via `surface_tension` as well as the liquid and vapor states via the `liquid` and `vapor` getters, respectively. Let's store the results in a pandas `DataFrame` to make plotting easier." @@ -593,7 +593,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "e67dd4a1", + "id": "97553d0f", "metadata": {}, "outputs": [], "source": [ @@ -609,7 +609,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "93b8d0c4", + "id": "51434b0f", "metadata": {}, "outputs": [ { @@ -640,7 +640,7 @@ }, { "cell_type": "markdown", - "id": "53583997", + "id": "5da2a406", "metadata": {}, "source": [ "## Concluding remkars\n", diff --git a/.doctrees/nbsphinx/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb b/.doctrees/nbsphinx/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb index 0fc8d0d26..7ab14a75d 100644 --- a/.doctrees/nbsphinx/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb +++ b/.doctrees/nbsphinx/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "bab96fcc", + "id": "489bc989", "metadata": {}, "source": [ "# Entropy scaling of pure substances\n", @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "8431bc93", + "id": "fa7a30c0", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "f0d79c8d", + "id": "244699e3", "metadata": {}, "source": [ "## PC-SAFT (individual component parameters)\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "35004642", + "id": "6da3e4ea", "metadata": {}, "outputs": [ { @@ -82,7 +82,7 @@ }, { "cell_type": "markdown", - "id": "f8848557", + "id": "1736b38d", "metadata": {}, "source": [ "## PC-SAFT homo-GC\n", @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "33e72cfc", + "id": "02f2826d", "metadata": {}, "outputs": [], "source": [ @@ -160,7 +160,7 @@ }, { "cell_type": "markdown", - "id": "f1c73277", + "id": "ceb80d36", "metadata": {}, "source": [ "### Build equations of state\n", @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "6872f57d", + "id": "a7092c18", "metadata": {}, "outputs": [], "source": [ @@ -185,7 +185,7 @@ }, { "cell_type": "markdown", - "id": "7323507a", + "id": "269e374a", "metadata": {}, "source": [ "### Compare parameters" @@ -194,7 +194,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "1f6742fa", + "id": "cab873bd", "metadata": {}, "outputs": [ { @@ -213,7 +213,7 @@ }, { "cell_type": "markdown", - "id": "b2cf4d4a", + "id": "f7274196", "metadata": {}, "source": [ "## Compare methods to NIST data (T = 450 K)\n", @@ -224,7 +224,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "79fe616b", + "id": "4f8aefd7", "metadata": {}, "outputs": [ { @@ -396,7 +396,7 @@ }, { "cell_type": "markdown", - "id": "b5c1e521", + "id": "3967d953", "metadata": {}, "source": [ "We loop through experimental data, read temperature, pressure and the phase (liquid or vapor) and generate `State` objects for the experimental conditions. Then, we compute the residual molar entropy and the logarithmic reduced viscosity." @@ -405,7 +405,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "62d87e22", + "id": "1c361ff5", "metadata": {}, "outputs": [ { @@ -560,7 +560,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "c8e49361", + "id": "0bc82645", "metadata": {}, "outputs": [ { @@ -591,7 +591,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "1cf81314", + "id": "398f5b2b", "metadata": {}, "outputs": [ { diff --git a/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb b/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb index c03b3390e..1aa0d131b 100644 --- a/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb +++ b/tutorials/dft/pcsaft/pcsaft_surface_tension.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "57d2f34e", + "id": "6eaa90fc", "metadata": {}, "source": [ "# Surface tension using PC-SAFT Helmholtz energy functionals\n", @@ -16,7 +16,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "86bac6ea", + "id": "5453eb60", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "0a780f0f", + "id": "608e7571", "metadata": {}, "source": [ "### Water parameters for PC-SAFT \n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "b90e1b36", + "id": "c315e36f", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ }, { "cell_type": "markdown", - "id": "5f643fda", + "id": "14bcceae", "metadata": {}, "source": [ "Let's first compute the critical point. We will make use of the critical temperature later." @@ -72,7 +72,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "79a4acd4", + "id": "e9bbc9ad", "metadata": {}, "outputs": [ { @@ -98,7 +98,7 @@ }, { "cell_type": "markdown", - "id": "dc2bc784", + "id": "edc07748", "metadata": {}, "source": [ "As you can see, the model overestimates the critical temperature." @@ -106,7 +106,7 @@ }, { "cell_type": "markdown", - "id": "04b742a2", + "id": "af9bcf34", "metadata": {}, "source": [ "## Surface tension for single VLE\n", @@ -120,7 +120,7 @@ }, { "cell_type": "markdown", - "id": "ac3b4a7e", + "id": "179713cb", "metadata": {}, "source": [ "For the VLE, we use the `PhaseEquilibrium.pure` method. Here for $T = 300$ Kelvin." @@ -129,7 +129,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "8a9905c1", + "id": "0b468d2b", "metadata": {}, "outputs": [ { @@ -157,7 +157,7 @@ }, { "cell_type": "markdown", - "id": "38599388", + "id": "1b881367", "metadata": {}, "source": [ "Next, we initialize the density profile. For the surface tension, a 1D DFT calculation in Cartesian coordinates is conducted. Thus, the density profile will be an 1D array (we have a single substance). \n", @@ -172,7 +172,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "b26dbe62", + "id": "399fbb66", "metadata": {}, "outputs": [ { @@ -197,7 +197,7 @@ }, { "cell_type": "markdown", - "id": "0fc6a77e", + "id": "de4316a9", "metadata": {}, "source": [ "The above method does not yet run a calculation. If we try to extract the surface tension, it will return `None`. Let's store the initial density profile for a later comparison." @@ -206,7 +206,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "44c9964e", + "id": "829b8d3f", "metadata": {}, "outputs": [ { @@ -226,7 +226,7 @@ }, { "cell_type": "markdown", - "id": "d867a8db", + "id": "8f12f7c8", "metadata": {}, "source": [ "To calculate the equilibrium density profile, we have to call the `solve()` method:" @@ -235,7 +235,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "5e009559", + "id": "503f3720", "metadata": {}, "outputs": [ { @@ -254,7 +254,7 @@ }, { "cell_type": "markdown", - "id": "dd020faa", + "id": "a0b9f9e5", "metadata": {}, "source": [ "`solve()` calculates the equilibrium density profile and returns the `PlanarInterface` object so that we can readily extract the `surface_tension`.\n", @@ -265,7 +265,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "9e2b28ac", + "id": "e427c205", "metadata": {}, "outputs": [ { @@ -294,7 +294,7 @@ }, { "cell_type": "markdown", - "id": "05ffa7f3", + "id": "50bd3642", "metadata": {}, "source": [ "## Comparison to NIST data using `SurfaceTensionDiagram`\n", @@ -305,7 +305,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "beca7f1f", + "id": "1d5a8f6e", "metadata": {}, "outputs": [ { @@ -543,7 +543,7 @@ }, { "cell_type": "markdown", - "id": "761c9b2f", + "id": "fae7ce1d", "metadata": {}, "source": [ "For the `SurfaceTensionDiagram`, we need to provide the VLE's. We compute those using the `PhaseDiagram` object (here for 50 temperatures between 275 Kelvin and the critical temperature) from which we get a list of `PhaseEquilibrium`s via the `states` filed. The `SurfaceTensionDiagram` is nice, because we can reuse equilibrium density profiles from prior iterations as input for the next iteration. It's therefore typically faster and more stable than an \"naive\" implementation by hand.\n", @@ -554,7 +554,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "407efd68", + "id": "0dae8c6f", "metadata": {}, "outputs": [ { @@ -584,7 +584,7 @@ }, { "cell_type": "markdown", - "id": "f5b67e43", + "id": "2f4f60b4", "metadata": {}, "source": [ "We now can extract all surface tensions via `surface_tension` as well as the liquid and vapor states via the `liquid` and `vapor` getters, respectively. Let's store the results in a pandas `DataFrame` to make plotting easier." @@ -593,7 +593,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "e67dd4a1", + "id": "97553d0f", "metadata": {}, "outputs": [], "source": [ @@ -609,7 +609,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "93b8d0c4", + "id": "51434b0f", "metadata": {}, "outputs": [ { @@ -640,7 +640,7 @@ }, { "cell_type": "markdown", - "id": "53583997", + "id": "5da2a406", "metadata": {}, "source": [ "## Concluding remkars\n", diff --git a/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb b/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb index 0fc8d0d26..7ab14a75d 100644 --- a/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb +++ b/tutorials/eos/pcsaft/pcsaft_entropy_scaling.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "bab96fcc", + "id": "489bc989", "metadata": {}, "source": [ "# Entropy scaling of pure substances\n", @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "8431bc93", + "id": "fa7a30c0", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "f0d79c8d", + "id": "244699e3", "metadata": {}, "source": [ "## PC-SAFT (individual component parameters)\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "35004642", + "id": "6da3e4ea", "metadata": {}, "outputs": [ { @@ -82,7 +82,7 @@ }, { "cell_type": "markdown", - "id": "f8848557", + "id": "1736b38d", "metadata": {}, "source": [ "## PC-SAFT homo-GC\n", @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "33e72cfc", + "id": "02f2826d", "metadata": {}, "outputs": [], "source": [ @@ -160,7 +160,7 @@ }, { "cell_type": "markdown", - "id": "f1c73277", + "id": "ceb80d36", "metadata": {}, "source": [ "### Build equations of state\n", @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "6872f57d", + "id": "a7092c18", "metadata": {}, "outputs": [], "source": [ @@ -185,7 +185,7 @@ }, { "cell_type": "markdown", - "id": "7323507a", + "id": "269e374a", "metadata": {}, "source": [ "### Compare parameters" @@ -194,7 +194,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "1f6742fa", + "id": "cab873bd", "metadata": {}, "outputs": [ { @@ -213,7 +213,7 @@ }, { "cell_type": "markdown", - "id": "b2cf4d4a", + "id": "f7274196", "metadata": {}, "source": [ "## Compare methods to NIST data (T = 450 K)\n", @@ -224,7 +224,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "79fe616b", + "id": "4f8aefd7", "metadata": {}, "outputs": [ { @@ -396,7 +396,7 @@ }, { "cell_type": "markdown", - "id": "b5c1e521", + "id": "3967d953", "metadata": {}, "source": [ "We loop through experimental data, read temperature, pressure and the phase (liquid or vapor) and generate `State` objects for the experimental conditions. Then, we compute the residual molar entropy and the logarithmic reduced viscosity." @@ -405,7 +405,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "62d87e22", + "id": "1c361ff5", "metadata": {}, "outputs": [ { @@ -560,7 +560,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "c8e49361", + "id": "0bc82645", "metadata": {}, "outputs": [ { @@ -591,7 +591,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "1cf81314", + "id": "398f5b2b", "metadata": {}, "outputs": [ {