-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
57 lines (42 loc) · 1.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import torch
import torchvision
from addict import Dict as adict
from mtorl.utils.initial import (ENV, init_criterion, init_dataloader,
init_model, init_optimizer, init_resume,
init_scheduler)
from mtorl.utils.log import logger, set_logger
from mtorl.utils.runner import Runner
from parse_args import parse_args
_CURR_DIR = os.path.dirname(os.path.realpath(__file__))
def main():
cfg = parse_args()
cfg = adict(vars(cfg))
if not os.path.exists(cfg.save_dir):
os.makedirs(cfg.save_dir)
log_file = os.path.join(cfg.save_dir, 'log.txt')
set_logger(log_file=log_file)
cfg.mtorl_root_dir = './'
logger.info(f"pytorch vision: {torch.__version__}")
logger.info(f"torchvision vision: {torchvision.__version__}")
logger.info(f"log_file: {log_file}")
logger.info('*' * 80)
logger.info('the args are the below')
logger.info('*' * 80)
for key, value in cfg.items():
logger.info('{:<20}:{}'.format(key, str(value)))
logger.info('*' * 80 + '\n')
torch.manual_seed(cfg.seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
ENV.checkpoint = init_resume(cfg)
ENV.model = init_model(cfg, ENV.checkpoint)
ENV.data_loaders = init_dataloader(cfg)
ENV.optimizer = init_optimizer(cfg)
ENV.criterion = init_criterion(cfg)
if not cfg.inference:
ENV.scheduler = init_scheduler(cfg)
runner = Runner(cfg)
runner.run()
if __name__ == '__main__':
main()