-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
205 lines (181 loc) · 7.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import logging
from misc.preferences import PREFERENCES
from misc.run_configuration import default_params, hyperOpt_goodParams
from misc import utils
from misc.experimental_environment import Experiment
from misc.transfer_learning_experiment import TransferLearningExperiment
import argparse
import traceback
def run(args, parser):
dataset_choice = args.dataset
runs = args.runs
epochs = args.epochs
name = args.name
description = args.description
task = args.task
use_random = args.random
load_model_path = args.restoreModel
produceBaseline = args.produceBaseline
use_cuda = args.cuda
possible_dataset_values = ['germeval', 'organic', 'coNLL-2003', 'amazon', 'transfer-amazon-organic']
if dataset_choice not in possible_dataset_values:
parser.error(f'The dataset argument {dataset_choice} was not in the allowed range of values: ' + str(possible_dataset_values))
# GermEval-2017
if dataset_choice == possible_dataset_values[0]:
from data.germeval2017 import germeval2017_dataset as dsl
PREFERENCES.defaults(
data_root='./data/data/germeval2017',
data_train='train_v1.4.tsv',
data_validation='dev_v1.4.tsv',
data_test='test_TIMESTAMP2.tsv',
source_index=0,
target_vocab_index=2,
file_format='csv',
language='de'
)
from misc.run_configuration import good_germeval_params,OutputLayerType
specific_hp = {**good_germeval_params, **{
'task': task,
'language': 'de',
'embedding_type': 'fasttext'
}}
# organic-2019
elif dataset_choice == possible_dataset_values[1]:
from data.organic2019 import organic_dataset as dsl
from data.organic2019 import ORGANIC_TASK_ALL, ORGANIC_TASK_ENTITIES, ORGANIC_TASK_ATTRIBUTES, ORGANIC_TASK_ENTITIES_COMBINE, ORGANIC_TASK_COARSE
from misc.run_configuration import good_organic_hp_params
possible_organic_values = [ORGANIC_TASK_ALL, ORGANIC_TASK_ENTITIES, ORGANIC_TASK_ATTRIBUTES, ORGANIC_TASK_ENTITIES_COMBINE, ORGANIC_TASK_COARSE]
if task not in possible_organic_values:
parser.error('The task argument was not in the allowed range of values: ' + str(possible_organic_values))
PREFERENCES.defaults(
data_root='./data/data/organic2019',
data_train='train.csv',
data_validation='validation.csv',
data_test='test.csv',
source_index=0,
target_vocab_index=1,
file_format='csv',
language='en'
)
specific_hp = good_organic_hp_params
specific_hp['task'] = task
# coNLL-2003
elif dataset_choice == possible_dataset_values[2]:
PREFERENCES.defaults(
data_root='./data/data/conll2003',
data_train='eng.train.txt',
data_validation='eng.testa.txt',
data_test='eng.testb.txt',
source_index=0,
target_vocab_index=1,
file_format='txt',
language='en'
)
from data.conll import conll2003_dataset as dsl
from misc.run_configuration import conll_params
specific_hp = {**conll_params, **{
'task': 'ner',
'language': 'en'
}}
# Transfer Learning - Amazon > Organic
elif dataset_choice == possible_dataset_values[4]:
PREFERENCES.defaults(
data_root=['./data/data/amazon/splits', './data/data/organic2019'],
data_train=['train.pkl', 'train.csv'],
data_validation=['val.pkl', 'validation.csv'],
data_test=['test.pkl', 'test.csv'],
source_index=[0, 0],
target_vocab_index=[1, 1],
file_format=['pkl', 'csv'],
language='en'
)
# PREFERENCES.defaults(
# data_root=['./data/data/organic2019', './data/data/organic2019'],
# data_train=['train.csv', 'train.csv'],
# data_validation=['validation.csv', 'validation.csv'],
# data_test=['test.csv', 'test.csv'],
# source_index=[0, 0],
# target_vocab_index=[1, 1],
# file_format=['csv', 'csv'],
# language='en'
# )
from data.organic2019 import ORGANIC_TASK_COARSE
from misc.run_configuration import good_organic_hp_params_2
specific_hp = {**good_organic_hp_params_2, **{
'task': task,
'language': 'en',
'use_spell_checkers': True
}}
# amazon reviews
else:
PREFERENCES.defaults(
data_root='./data/data/amazon/splits',
data_train='train.pkl',
data_validation='val.pkl',
data_test='test.pkl',
source_index=0,
target_vocab_index=1,
file_format='pkl',
language='en'
)
from data.amazon import amazon_dataset as dsl
from misc.run_configuration import hyperOpt_goodParams
specific_hp = {**hyperOpt_goodParams, **{
'task': 'amazon',
'use_spell_checkers': True,
'use_stop_words': True,
'language': 'en',
'clip_comments_to': 100,
'embedding_type': 'glove'
}}
main_experiment_name = name
experiment_name = utils.create_loggers(experiment_name=main_experiment_name)
logger = logging.getLogger(__name__)
dataset_logger = logging.getLogger('data_loader')
logger.info('Run hyper parameter random grid search for experiment with name ' + main_experiment_name)
logger.info('num_optim_iterations: ' + str(runs))
specific_hp['num_epochs'] = epochs
specific_hp['use_random_classifier'] = use_random
try:
logger.info('Current commit: ' + utils.get_current_git_commit())
print('Current commit: ' + utils.get_current_git_commit())
except Exception as err:
logger.exception('Could not print current commit')
try:
if dataset_choice == possible_dataset_values[-1]:
from data.amazon import load_splits as source_dsl
from data.organic2019 import load_splits as targer_dsl
e = TransferLearningExperiment(task, name, description, default_params, specific_hp, [source_dsl, targer_dsl], PREFERENCES.__dict__['prefs'], runs=runs, load_model_path=load_model_path, produce_baseline=produceBaseline)
else:
e = Experiment(name, description, default_params, specific_hp, dsl, runs=runs)
e.run()
except Exception as err:
logger.exception('Could not complete run')
print('Could not complete run. The log file provides more details.')
print(repr(err))
traceback.print_tb(err.__traceback__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='HyperOpt hp optimization tool')
parser.add_argument('dataset', type=str,
help='Specify which dataset to optimize')
parser.add_argument('--cuda', type=bool, default=True,
help='Flag, wether or not cuda should be enabled. Default: If cuda is available, use it, if not then do not use it')
parser.add_argument('--runs', type=int, default=1,
help='Number of runs evaluation runs to perform')
parser.add_argument('--epochs', type=int, default=35,
help='Number of epochs to perform')
parser.add_argument('--name', type=str, default='test',
help='Specify a name of the optimization run')
parser.add_argument('--description', type=str, default='test run on {} with {} epochs and {} validations',
help='Specify a name of the optimization run')
parser.add_argument('--task', type=str,
help='Specify the task to execute. Only applicable when using the organic dataset')
parser.add_argument('--random', type=bool,
help='If random is true, use a random classifier for predictions on the dataset')
parser.add_argument('--restoreModel', type=str, default=None,
help='Provide a path to a checkpoint-folder which contains checkpoints. The application will search for the checkpoint with the highest score.')
parser.add_argument('--produceBaseline', type=bool, default=False,
help='Flag, wether or not a baseline for the transfer learning task should be trained.')
args = parser.parse_args()
run(args, parser)
print('Exit')