-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathweb_demo.py
209 lines (157 loc) · 7 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import tqdm
import datetime
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import tensorflow as tf
from skimage import io
from model.transformer import Transformer, default_hparams
from tokenizers import ByteLevelBPETokenizer
@st.cache_resource
def load_validator():
validator_model = tf.keras.models.load_model('checkpoints/cxr_validator_model.tf')
print('Validator Model Loaded!')
return validator_model
@st.cache_resource
def load_model():
# Load Tokenizer
tokenizer = ByteLevelBPETokenizer(
'preprocessing/mimic/mimic-vocab.json',
'preprocessing/mimic/mimic-merges.txt',
)
# Load Model
hparams = default_hparams()
transformer = Transformer(
num_layers=hparams['num_layers'],
d_model=hparams['d_model'],
num_heads=hparams['num_heads'],
dff=hparams['dff'],
target_vocab_size=tokenizer.get_vocab_size(),
dropout_rate=hparams['dropout_rate'])
transformer.load_weights('checkpoints/RATCHET.tf')
print(f'Model Loaded! Checkpoint file: checkpoints/RATCHET.tf')
return transformer, tokenizer
def top_k_logits(logits, k):
if k == 0:
# no truncation
return logits
def _top_k():
values, _ = tf.nn.top_k(logits, k=k)
min_values = values[:, -1, tf.newaxis]
return tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
return tf.cond(
tf.equal(k, 0),
lambda: logits,
lambda: _top_k(),
)
def top_p_logits(logits, p):
"""Nucleus sampling"""
batch, _ = logits.shape.as_list()
sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
indices = tf.stack([
tf.range(0, batch),
# number of indices to include
tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
], axis=-1)
min_values = tf.gather_nd(sorted_logits, indices)
return tf.where(
logits < min_values,
tf.ones_like(logits) * -1e10,
logits,
)
def evaluate(inp_img, tokenizer, transformer, temperature, top_k, top_p, options, seed, MAX_LENGTH=128):
# The first token to the transformer should be the start token
output = tf.convert_to_tensor([[tokenizer.token_to_id('<s>')]])
my_bar = st.progress(0)
for i in tqdm.tqdm(range(MAX_LENGTH)):
my_bar.progress(i/MAX_LENGTH)
# predictions.shape == (batch_size, seq_len, vocab_size)
predictions = transformer([inp_img, output], training=False)
# select the last word from the seq_len dimension
predictions = predictions[:, -1, :] / temperature # (batch_size, vocab_size)
predictions = top_k_logits(predictions, k=top_k)
predictions = top_p_logits(predictions, p=top_p)
if options == 'Greedy':
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)[:, tf.newaxis]
elif options == 'Sampling':
predicted_id = tf.random.categorical(predictions, num_samples=1, dtype=tf.int32, seed=seed)
else:
st.write('SHOULD NOT HAPPEN')
# return the result if the predicted_id is equal to the end token
if predicted_id == 2: # stop token #tokenizer_en.vocab_size + 1:
my_bar.empty()
break
# concatentate the predicted_id to the output which is given to the decoder
# as its input.
output = tf.concat([output, predicted_id], axis=-1)
my_bar.empty()
# transformer([inp_img, output[:, :-1]], training=False)
return tf.squeeze(output, axis=0)[1:], transformer.decoder.last_attn_scores
def main():
st.title('Chest X-ray AI Diagnosis Demo')
st.text('Made with Streamlit and Attention RNN')
transformer, tokenizer = load_model()
cxr_validator_model = load_validator()
st.sidebar.title('Configuration')
options = st.sidebar.selectbox('Generation Method', ('Greedy', 'Sampling'))
seed = st.sidebar.number_input('Sampling Seed:', value=42)
temperature = st.sidebar.number_input('Temperature', value=1.)
top_k = st.sidebar.slider('top_k', min_value=0, max_value=tokenizer.get_vocab_size(), value=6, step=1)
top_p = st.sidebar.slider('top_p', min_value=0., max_value=1., value=1., step=0.01)
attention_head = st.sidebar.slider('attention_head', min_value=-1, max_value=7, value=-1, step=1)
st.sidebar.info('PRIVACY POLICY: Uploaded images are never stored on disk.')
st.set_option('deprecation.showfileUploaderEncoding', False)
uploaded_file = st.file_uploader('Choose an image...', type=('png', 'jpg', 'jpeg'))
if uploaded_file:
# Read input image with size [1, H, W, 1] and range (0, 255)
img_array = io.imread(uploaded_file, as_gray=True)[None, ..., None]
# Convert image to float values in (0, 1)
img_array = tf.image.convert_image_dtype(img_array, tf.float32)
# Resize image with padding to [1, 224, 224, 1]
img_array = tf.image.resize_with_pad(img_array, 224, 224, method=tf.image.ResizeMethod.BILINEAR)
# Display input image
st.image(np.squeeze(img_array.numpy()), caption='Uploaded Image')
# Check image
valid = tf.nn.sigmoid(cxr_validator_model(img_array))
if valid < 0.1:
st.info('Image is not a Chest X-ray')
return
# Log datetime
print('[{}] Running Analysis...'
.format(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
# Generate radiology report
with st.spinner('Generating report... Do not refresh or close window.'):
result, attention_weights = evaluate(img_array, tokenizer, transformer,
temperature, top_k, top_p,
options, seed)
predicted_sentence = tokenizer.decode(result)
# Display generated text
st.subheader('Generated Report:')
st.write(predicted_sentence)
# st.info(predicted_sentence)
st.subheader('Attention Plot:')
attn_map = attention_weights[0] # squeeze
if attention_head == -1: # average attention heads
attn_map = tf.reduce_mean(attn_map, axis=0)
else: # select attention heads
attn_map = attn_map[attention_head]
attn_map = attn_map / attn_map.numpy().max() * 255
fig = plt.figure(figsize=(40, 80))
for i in range(attn_map.shape[0] - 1):
attn_token = attn_map[i, ...]
attn_token = tf.reshape(attn_token, [7, 7])
ax = fig.add_subplot(16, 8, i + 1)
ax.set_title(tokenizer.decode([result.numpy()[i]]))
img = ax.imshow(np.squeeze(img_array))
ax.imshow(attn_token, cmap='gray', alpha=0.6, extent=img.get_extent())
st.pyplot(plt)
# Run again?
st.button('Regenerate Report')
if __name__ == '__main__':
tf.config.set_visible_devices([], 'GPU')
main()