-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdse-dkg.py
268 lines (247 loc) · 11.4 KB
/
dse-dkg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import sys
working_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(working_dir) # change working directory to the location of this file
sys.path.append(".") # Adds higher directory to python modules path.
import argparse
import time
import torch
import itertools
import numpy as np
from util.common import fold_maker, set_seed
from analytic.get_alg_properties import get_alg_info
bench_path = os.path.join(working_dir, 'analytic/benchmarks')
alg = get_alg_info(os.path.join(bench_path, 'fft/fft-pisa.out'), os.path.join(bench_path, 'fft/fft_results.txt'))
def parse_args():
parser = argparse.ArgumentParser(description='Boom script')
parser.add_argument('--n_sample', default='10', type=int, help='episode number for the whole training')
parser.add_argument('--area_limit', default='8', type=float, help='limit of the area')
parser.add_argument('--n_init', default='5', type=int, help='init points where action is randomly chosen')
parser.add_argument('--seed', default='2', type=int, help='seed for torch and random') # 7 11
parser.add_argument('--log_path', default=os.path.join(working_dir, 'logs/DKG'), type=str, help='file path of log files')
parser.add_argument('--method', default='dkg', type=str, help='choose method: discrete kernel or dkg')
parser.add_argument('--h_param', default='1', type=float, help='h param')
# parser.add_argument('--benchmark', default='mm-405060-456', type=str, help='RISCV toolchain benchmarks: dijkstra, dhrystone, median, mm, mt-matmul, mt-vvadd, multiply, pmp, qsort, rsort, spmv, towers, vvadd1000')
return parser.parse_args()
def random_ted(size, design_space, verbose=False):
from random import randint
from sklearn.gaussian_process.kernels import RBF
K = list(itertools.product(*design_space))
m = size # init training set size
Nrted = 59 # according to original paper
u = 0.1 # according to original paper
length_scale = 0.1 # according to original paper
f = RBF(length_scale=length_scale)
def F_kk(K):
dis_list = []
for k_i in K:
for k_j in K:
dis_list.append(f(np.atleast_2d(k_i), np.atleast_2d(k_j)))
return np.array(dis_list).reshape(len(K), len(K))
K_tilde = []
for i in range(m):
M = [K[randint(0,len(K)-1)] for _ in range(Nrted)]
M = M + K_tilde
F = F_kk(M)
if verbose: print(F)
denoms=[F[-i][-i] + u for i in range(len(K_tilde))]
for i in range(len(denoms)):
for j in range(len(M)):
for k in range(len(M)):
F[j][k] -= (F[j][i] * F[k][i]) / denoms[i]
if verbose: print('----------------------------\n', F)
assert len(M) == F.shape[0]
k_i = M[np.argmax([np.linalg.norm(F[i])**2 / (F[i][i] + u) for i in range(len(M))])] # find i that maximaize norm-2(column i of F)
K_tilde.append(k_i)
if verbose: print(K_tilde)
return K_tilde
def evaluate(params, benchmarks, log_path, area_limit):
from hf.vcs import get_cpi_vcs
from analytic.Analytic_model_torch import McPAT, CPI
ds = set_system(torch.tensor(params, dtype=torch.float64))
area = McPAT(ds, alg, 0.5, 0.5, 0.5)
if area > area_limit:
return 0, -1
else:
# cpi_avg = CPI(ds, alg)
# reward = 1/cpi_avg
cpi_total = 0
# with open(os.path.join(log_path, "hf-progress.txt"),"a") as f: f.write('\n{}\n'.format(params))
for bm in benchmarks:
cpi = get_cpi_vcs(params, bm, log_path)
cpi_total += cpi
cpi_avg = cpi_total / len(benchmarks)
reward = 1/cpi_avg
return float(reward), float(cpi_avg)
def param_regulator(params):
params = [int(x) for x in params]
# print('params', params, end='')
design = []
design.append(2**params[0])
design.append(2**params[1])
design.append(2**params[2])
design.append(2**params[3])
design.append(2*params[4])
design.append(params[5])
design.append(32*params[6])
design.append(params[7])
design.append(params[8])
design.append(params[9])
design.append(min(2**params[10], 24))
max_FU = max(design[7], design[8], design[9])
design[5] = max(design[5], max_FU) # decode width should be larger than FU issue width
if design[5] == 5:
design[10] = max(design[10], 8)
elif design[5] >= 3:
design[10] = max(design[10], 4)
return design
def set_system(params):
system = {
"L1LineSize": 64, #byte
"L1sets": params[0],
"L1ways": params[1],
"L2LineSize": 64, #byte
"L2sets": params[2],
"L2ways": params[3],
"L1latency": 4,
"L2latency": 21,
"DRAMlatency": 274,
"issue_width": params[7]+params[8]+params[9],
"mshr": params[4],
"dispatch": params[5],
"FUint": params[7],
"FUfp": params[8],
"FUmem": params[9],
"FUcontrol": 1,
"Cycle_int_op": 1,
"Cycle_int_mul": 3,
"Cycle_int_div": 18,
"Cycle_fp_op": 3,
"Cycle_fp_mul": 5,
"Cycle_fp_div": 10,
"BWCoreL1": 139586437120,
"BWL1L2": 42949672960,
"BWL2DRAM": 85899345920,
"freq": 2e9,
"frontpipe": 5,
"ROB": params[6],
"IQ": params[10],
}
return system
def BO_dkg(x_init, y_init, n_sample, design_space, benchmarks, log_path, area_limit, valid_pool, h_param):
from gpytorch.mlls import ExactMarginalLogLikelihood
from botorch.optim import optimize_acqf
from botorch.acquisition import ExpectedImprovement
from botorch.models.gp_regression import SingleTaskDKG
x_temp = [[x[i]/max(design_space[i]) for i in range(len(x))] for x in x_init]
x_train = torch.tensor(x_temp, dtype=torch.float32)
y_train = torch.tensor(y_init, dtype=torch.float32)
counter = len(y_train.nonzero())
print('init hf samples:', counter)
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('h: {}\n'.format(h_param))
f.write('init hf samples:{}\n'.format(counter))
best_observed_ei = []
best_observed_ei.append(y_train.max().item())
print('best of init cpi: ', 1/max(best_observed_ei))
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('best of init cpi:{}\n'.format(1/max(best_observed_ei)))
model = SingleTaskDKG(x_train, y_train.unsqueeze(-1))
mll = ExactMarginalLogLikelihood(model.likelihood, model)
training_iterations = 60
optimizer = torch.optim.Adam([
{'params': model.feature_extractor.parameters()},
{'params': model.covar_module.parameters()},
{'params': model.mean_module.parameters()},
{'params': model.likelihood.parameters()},
], lr=0.001)
for iteration in range(1, 201):
print(iteration, end=' ')
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('{} - '.format(iteration))
#################### fit the DKG models ####################
model.train()
model.likelihood.train()
for i in range(training_iterations):
optimizer.zero_grad()
output = model(x_train)
loss = -mll(output, y_train)
loss.backward()
optimizer.step()
model.eval()
model.likelihood.eval()
#################### end of fitting ####################
#################### bo inference the next sample ####################
EI = ExpectedImprovement(model=model, best_f=max(best_observed_ei)+h_param, maximize = True)#0.3
candidates, _ = optimize_acqf(
acq_function=EI,
bounds= torch.tensor([[x[0]/x[-1] for x in design_space], [1 for x in design_space]], dtype=torch.float32),
q=1,
num_restarts=10,
raw_samples=512, # used for intialization heuristic
options={"batch_limit": 5, "maxiter": 200},
)
new_x = candidates.detach()
params = new_x.squeeze()
params = param_regulator([int(params[i]*max(design_space[i])) for i in range(len(params))])
print('params:', params, end=' ')
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('params:{} '.format(params))
reward, cpi = evaluate(params, benchmarks, log_path, area_limit)
print('reward:', round(reward, 4), 'cpi:', round(cpi, 4))
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('reward:{} '.format(round(reward, 4)))
f.write('cpi:{}\n'.format(round(cpi, 4))) if cpi>0 else f.write('\n')
new_y = torch.tensor([reward], dtype=torch.float32) # add output dimension
#################### end of inferencing ####################
#################### update GP training set ####################
x_train = torch.cat([x_train, new_x])
y_train = torch.cat([y_train, new_y])
best_observed_ei.append(y_train.max().item())
if new_y > 0 and params not in valid_pool:
counter += 1
valid_pool.append(params)
if counter >= n_sample: break
states = model.state_dict()
model = SingleTaskDKG(x_train, y_train.unsqueeze(-1))
mll = ExactMarginalLogLikelihood(likelihood=model.likelihood, model=model)
model.load_state_dict(states)
#################### end of updating ####################
print('x_train: ', x_train)
print('y_train: ', y_train)
print('best cpi: ', 1/max(best_observed_ei))
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('best cpi:{}'.format(1/max(best_observed_ei)))
if __name__ == '__main__':
args = parse_args()
args.log_path = fold_maker(args.log_path)
print('Logs stored in {}.'.format(args.log_path))
set_seed(args.seed)
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('seed:{}\n'.format(args.seed))
benchmarks = ['dijkstra', 'mm-405060-456', 'vvadd1000', 'qsort8192', 'fft', 'stringsearch']
design_space = [[4,5,6], [1,2,3,4], [7,8,9,10,11], [1,2,3,4], [1,2,3,4,5],
[1,2,3,4,5], [1,2,3,4,5], [1,2,3,4,5], [1,2], [1,2], [1,2,3,4,5]]
x = random_ted(args.n_init, design_space)
# x=[[4, 2, 11, 1, 1, 5, 2, 3, 1, 1, 5],[5, 3, 9, 1, 1, 1, 2, 2, 2, 2, 3],[4, 2, 10, 3, 4, 5, 1, 2, 1, 1, 4]]
init_designs = [param_regulator(ds) for ds in x]
assert len(init_designs) == args.n_init
print(init_designs)
y=[]
valid_pool = []
for params in init_designs:
start = time.time()
reward, cpi = evaluate(params, benchmarks, args.log_path, args.area_limit)
y.append(reward)
if reward > 0: valid_pool.append(params)
print('params:', params)
print('reward:', reward)
with open(os.path.join(args.log_path, "details.txt"),"a") as f:
f.write('init param:{} reward:{} cpi:{}\n'.format(params, round(reward,4), round(cpi,4)))
print('Time spent:', time.time()-start, '\n')
start = time.time()
BO_dkg(x, y, args.n_sample, design_space, benchmarks, args.log_path, args.area_limit, valid_pool, args.h_param)
print('Time spent:', time.time()-start)
print('Logs stored in {}.'.format(args.log_path))
# print('Best epoch:{}, loss:{}, locations:{}'.format(best_epoch, best_info[0], best_info[1]))
# print('Best epoch: {}, info {}'.format(best_epoch, best_info), file=open(os.path.join(logdir, 'final.txt'), 'a'))