-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathcount-complete-tree-nodes.cpp
143 lines (129 loc) · 3.86 KB
/
count-complete-tree-nodes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
//Solution 0: Olog(N) space, O(log(N) * log(N)) time, 88ms
class Solution {
public:
int height = 0;
int countNodes(TreeNode* root) {
TreeNode* p = root;
height = 0;
while (p != NULL) {
++height;
p = p->left;
}
return _countNodes(root, 1);
}
private:
int _countNodes(TreeNode* root, const int cur_height) {
if (root == NULL) {
return 0;
}
TreeNode* check_bound = root->right;
int check_bound_height = cur_height;
while (check_bound != NULL) {
++check_bound_height;
check_bound = check_bound->left;
}
//use << is much faster
if (check_bound_height == height) {
return (1 << (height - cur_height))
+ _countNodes(root->right, cur_height + 1);
} else {
return (1 << (height - cur_height - 1))
+ _countNodes(root->left, cur_height + 1);
}
}
};
//Solution 1: Olog(N) space, O(log(N) * log(N)) time, 80ms
//similar to binary search
class Solution {
public:
int height = 0;
int countNodes(TreeNode* root) {
TreeNode* p = root;
height = 0;
while (p != NULL) {
++height;
p = p->left;
}
return _countNodes(root, 1);
}
private:
int _countNodes(TreeNode* root, const int cur_height) {
if (root == NULL) {
return 0;
}
if (cur_height >= height - 1) {
int res = 1;
res += root->left == NULL ? 0 : 1;
res += root->right == NULL ? 0 : 1;
return res;
}
TreeNode* check_bound = root->right;
int check_bound_height = cur_height;
int bound_status = -1; //1 -> bound found
//2 -> deepest layer missing
//3 -> deepest layer filled
while (true) {
++check_bound_height;
if (check_bound_height == height - 1) {
if (check_bound->right != NULL) {
bound_status = 3;
} else if (check_bound->left != NULL) {
bound_status = 1;
} else {
bound_status = 2;
}
break;
}
check_bound = check_bound->left;
}
//use << is much faster
switch (bound_status) {
case 1:
return (1 << (height - cur_height))
+ (1 << (height - cur_height - 1));
case 2:
return (1 << (height - cur_height - 1))
+ _countNodes(root->left, cur_height + 1);
case 3:
return (1 << (height - cur_height))
+ _countNodes(root->right, cur_height + 1);
}
}
};
//Solution 1: Olog(N) space, O(log(N) * log(N)) time, 156ms
//Inspired by: https://leetcode.com/discuss/38899/easy-short-c-recursive-solution
//Actually rewriten the refered one
class Solution {
public:
int countNodes(TreeNode* root) {
if (root == NULL) {
return 0;
}
int left_height = 0, right_height = 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
while (left != NULL) {
++left_height;
left = left->left;
}
while (right != NULL) {
++right_height;
right = right->right;
}
//use << is much faster
if (left_height == right_height) {
return (1 << (left_height + 1)) - 1;
} else {
return 1 + countNodes(root->left) + countNodes(root->right);
}
}
};