You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I want to print the results in following format:
filename,class_name, [width1,1]x[height1,1]+[xmin1,1]+[ymin1,1]?
I created my dataset in the following way.
The custom datasets are made in this way.
`def create_dataset_dicts(df, classes):
dataset_dicts = []
for image_id, img_name in enumerate(df.filename.unique()):
for d in ["train", "val"]:
DatasetCatalog.register(d, lambda d=d: create_dataset_dicts(train_df if d == "train" else test_df, classes))
MetadataCatalog.get(d).set(thing_classes=classes)`
Here is the full link. [(https://github.com/Nisnab/solving-challenge-using-detectron2/blob/main/detectron2-coral.ipynb)
]
my results are displayed in the following format. {"image_id": 0, "category_id": 1, "bbox": [2691.6044921875, 916.4785766601562, 217.886962890625, 179.80816650390625], "score": 0.8843753337860107, "segmentation": {"size": [3024, 4032], "counts": "Uddh7Q1]2]Ong2[1lVMFjh2Q3N2N2O1N2N2O001O2N2M3N1O1O1O1O001O00001O000O2O001O1O001O001O0000001O0000001O00000000O10000000000000000001O00O1000000O100000000O100000000000000000000000000000000000000000000000000000000001O000000000001O0000000001O000000000000001O000000000000001O000000000000000000000000000000000000000000000000001O0000000000000000000000000000000000000000O2O0000000000001O00001O001O1O1O1O001O0O101O00000O2O0O2O1N2O1N4L4L3M2N2O1N2N3L4M3L7Ib0YO[ZiW3"}}
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
I want to print the results in following format:
filename,class_name, [width1,1]x[height1,1]+[xmin1,1]+[ymin1,1]?
I created my dataset in the following way.
The custom datasets are made in this way.
`def create_dataset_dicts(df, classes):
dataset_dicts = []
for image_id, img_name in enumerate(df.filename.unique()):
return dataset_dicts
for d in ["train", "val"]:
DatasetCatalog.register(d, lambda d=d: create_dataset_dicts(train_df if d == "train" else test_df, classes))
MetadataCatalog.get(d).set(thing_classes=classes)`
Here is the full link. [(https://github.com/Nisnab/solving-challenge-using-detectron2/blob/main/detectron2-coral.ipynb)
]
my results are displayed in the following format.
{"image_id": 0, "category_id": 1, "bbox": [2691.6044921875, 916.4785766601562, 217.886962890625, 179.80816650390625], "score": 0.8843753337860107, "segmentation": {"size": [3024, 4032], "counts": "Uddh7Q1]2]Ong2[1lVMFjh2Q3N2N2O1N2N2O001O2N2M3N1O1O1O1O001O00001O000O2O001O1O001O001O0000001O0000001O00000000O10000000000000000001O00O1000000O100000000O100000000000000000000000000000000000000000000000000000000001O000000000001O0000000001O000000000000001O000000000000001O000000000000000000000000000000000000000000000000001O0000000000000000000000000000000000000000O2O0000000000001O00001O001O1O1O1O001O0O101O00000O2O0O2O1N2O1N4L4L3M2N2O1N2N3L4M3L7Ib0YO[ZiW3"}}
Beta Was this translation helpful? Give feedback.
All reactions