-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsequence.py
775 lines (691 loc) · 24.6 KB
/
sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import math
import torch
from tqdm import tqdm
import wandb
from utils import (
add_dummy_dim_to_slice,
dotdict,
expand_for_broadcast_tensor,
expand_for_broadcast_list,
)
def msg_to_seq(msg, tokenizer, device, context=None):
if isinstance(msg, str):
if msg[0] == "{" and msg[-1] == "}":
key = msg[1:-1]
if key in context:
msg = context[key]
else:
raise ValueError(f"Key {key} not found in context.")
if isinstance(msg, Seq):
seq = msg.to(device)
elif isinstance(msg, str):
seq = Seq(text=[msg], tokenizer=tokenizer, device=device)
elif isinstance(msg, EmptySeq):
seq = msg
else:
raise ValueError(f"Msg should be Seq or string. Got {msg} ({type(msg)}).")
return seq
def stack_seqs(list_of_seqs):
assert all([seq is not None for seq in list_of_seqs])
dtypes = [seq.dtype for seq in list_of_seqs]
assert len(set(dtypes)) <= 1
seq_lens = [seq.seq_len for seq in list_of_seqs]
assert len(set(seq_lens)) <= 1 or dtypes[0] == "text"
tokenizers = [seq.tokenizer for seq in list_of_seqs]
assert len(set(tokenizers)) <= 1
devices = [seq.device for seq in list_of_seqs]
assert len(set(devices)) <= 1
if dtypes[0] == "logits":
logits = torch.cat([seq.logits for seq in list_of_seqs], dim=0)
mask = torch.cat([seq.mask for seq in list_of_seqs], dim=0)
stacked_seqs = Seq(
logits=logits, mask=mask, tokenizer=tokenizers[0], device=devices[0]
)
elif dtypes[0] == "probs":
probs = torch.cat([seq.probs for seq in list_of_seqs], dim=0)
mask = torch.cat([seq.mask for seq in list_of_seqs], dim=0)
stacked_seqs = Seq(
probs=probs, mask=mask, tokenizer=tokenizers[0], device=devices[0]
)
elif dtypes[0] == "ids":
ids = torch.cat([seq.ids for seq in list_of_seqs], dim=0)
mask = torch.cat([seq.mask for seq in list_of_seqs], dim=0)
stacked_seqs = Seq(
ids=ids, mask=mask, tokenizer=tokenizers[0], device=devices[0]
)
elif dtypes[0] == "text":
text = [item for seq in list_of_seqs for item in seq.text]
stacked_seqs = Seq(text=text, tokenizer=tokenizers[0], device=devices[0])
else:
raise RuntimeError("No data to stack.")
return stacked_seqs
def collate_fn(list_of_data):
(
instruct_batch,
target_batch,
suffix_batch,
priority_batch,
) = zip(*list_of_data)
context = dotdict()
context.instruct = stack_seqs(instruct_batch)
context.target = stack_seqs(target_batch)
context.suffix = stack_seqs(suffix_batch)
return context, priority_batch
class MergedSeq:
def __init__(self, seqs):
assert all([seq is not None for seq in seqs])
self._seqs = [seq for seq in seqs if not seq.is_empty]
self.tokenizer = self._seqs[0].tokenizer
self.device = self._seqs[0].device
assert all([seq.tokenizer == self.tokenizer for seq in self._seqs])
assert all([seq.device == self.device for seq in self._seqs])
@property
def logits(self):
logits_list = expand_for_broadcast_tensor(
[seq.logits for seq in self._seqs], dim=0
)
logits = torch.cat(logits_list, dim=1)
return logits
@property
def probs(self):
probs_list = expand_for_broadcast_tensor(
[seq.probs for seq in self._seqs], dim=0
)
probs = torch.cat(probs_list, dim=1)
return probs
@property
def ids(self):
ids_list = expand_for_broadcast_tensor([seq.ids for seq in self._seqs], dim=0)
ids = torch.cat(ids_list, dim=1)
return ids
@property
def text(self):
text_list = expand_for_broadcast_list([seq.text for seq in self._seqs])
separator = ""
text = []
for i in range(len(text_list[0])):
text.append(
separator.join([text_list[j][i] for j in range(len(text_list))])
)
return text
@property
def mask(self):
mask_list = expand_for_broadcast_tensor([seq.mask for seq in self._seqs], dim=0)
mask = torch.cat(mask_list, dim=1)
return mask
@property
def logprobs(self):
return self.to_seq(merge_dtype="logits").logprobs
# derived properties
def get_embed(self, embedding_matrix):
embeds_list = expand_for_broadcast_tensor(
[seq.get_embed(embedding_matrix) for seq in self._seqs],
dim=0,
)
embeds = torch.cat(embeds_list, dim=1)
return embeds
def get_entropy(self, average=True):
entropies_list = expand_for_broadcast_tensor(
[seq.get_entropy(average=False) for seq in self._seqs],
dim=0,
)
normalized_entropy_per_token = torch.cat(entropies_list, dim=1)
if average:
entropy_batch = torch.sum(
normalized_entropy_per_token * self.mask, dim=1
) / (torch.sum(self.mask, dim=1) + self.eps)
entropy = torch.mean(entropy_batch)
else:
entropy = normalized_entropy_per_token
return entropy
@property
def bs(self):
batch_sizes = [seq.bs for seq in self._seqs]
bs = max(batch_sizes)
assert all([batch_size == bs or batch_size == 1 for batch_size in batch_sizes])
return bs
@property
def seq_len(self):
seq_len = sum([seq.seq_len for seq in self._seqs])
return seq_len
def __len__(self):
raise NotImplementedError
@property
def is_hard(self):
is_hard_list = [seq.is_hard for seq in self._seqs]
is_hard = all(is_hard_list)
return is_hard
def to_html(self, colors=None, normalize=False, color_scheme=1):
if colors is None:
colors = self.get_entropy(average=False)
html = self.to_seq(merge_dtype="ids").to_html(
colors=colors, normalize=normalize, color_scheme=color_scheme
)
return html
def to_seq(self, merge_dtype):
if merge_dtype == "ids":
seq = Seq(
ids=self.ids,
mask=self.mask,
tokenizer=self.tokenizer,
device=self.device,
)
elif merge_dtype == "logits":
seq = Seq(
logits=self.logits,
mask=self.mask,
tokenizer=self.tokenizer,
device=self.device,
)
elif merge_dtype == "probs":
seq = Seq(
probs=self.probs,
mask=self.mask,
tokenizer=self.tokenizer,
device=self.device,
)
elif merge_dtype == "text":
seq = Seq(
text=self.text,
mask=self.mask,
tokenizer=self.tokenizer,
device=self.device,
)
else:
raise ValueError(f"Invalid merge_dtype: {merge_dtype}")
return seq
def clone(self):
return MergedSeq(seqs=[seq.clone() for seq in self._seqs])
def detach(self):
return MergedSeq(seqs=[seq.detach() for seq in self._seqs])
def repeat_interleave(self, times, dim=0):
return MergedSeq(
seqs=[seq.repeat_interleave(times=times, dim=dim) for seq in self._seqs]
)
def to(self, device):
return MergedSeq(seqs=[seq.to(device) for seq in self._seqs])
def detach_(self):
for seq in self._seqs:
seq.detach_()
@property
def is_empty(self):
return False
class EmptySeq:
def __init__(self, tokenizer, device) -> None:
self.tokenizer = tokenizer
self.device = device
@property
def is_empty(self):
return True
def __len__(self):
raise NotImplementedError
class Seq:
def __init__(
self,
tokenizer,
device,
ids=None,
tokens=None,
text=None,
logits=None,
probs=None,
mask=None,
) -> None:
self.tokenizer = tokenizer
self.device = device
self._logits = None
self._probs = None
self._ids = None
self._text = None
self.mask = None
self.eps = 1e-8
if logits is not None:
self.logits = logits
elif probs is not None:
self.probs = probs
elif ids is not None:
self.ids = ids
elif text is not None:
self.text = text
elif tokens is not None:
self.tokens = tokens
else:
raise RuntimeError("At least one field should be provided.")
if mask is not None:
self.mask = mask
if self.mask is None:
self.mask = torch.ones((self.bs, self.seq_len), device=self.device).bool()
@property
def logits(self):
if self.dtype == "logits":
logits = self._logits
else:
logits = torch.log(self.probs + self.eps)
if torch.isnan(logits).any() or torch.isinf(logits).any():
raise RuntimeError(f"NaN in retrieved logits: {logits}")
return logits
@logits.setter
def logits(self, value):
self._logits = value
if torch.isnan(self._logits).any() or torch.isinf(self._logits).any():
raise RuntimeError(f"NaN in set logits: {self._logits}")
@property
def probs(self):
if self.dtype == "probs":
probs = self._probs
elif self.dtype == "logits":
probs = torch.nn.functional.softmax(self.logits, dim=2)
else:
probs = self.onehot
if torch.isnan(probs).any() or torch.isinf(probs).any():
raise RuntimeError(f"NaN in retrieved probs: {probs}")
return probs
@probs.setter
def probs(self, value):
self._probs = value
if torch.isnan(self._probs).any() or torch.isinf(self._probs).any():
raise RuntimeError(f"NaN in set probs: {self._probs}")
@property
def ids(self):
if self.dtype == "ids":
ids = self._ids
elif self.dtype == "logits":
ids = torch.argmax(self.logits, dim=2)
elif self.dtype == "probs":
ids = torch.argmax(self.probs, dim=2)
elif self.dtype == "text":
ids = self.tokenizer.batch_encode_plus(
self._text, return_tensors="pt", add_special_tokens=False, padding=True
).input_ids.to(self.device)
else:
raise RuntimeError("No data to retrieve ids from.")
return ids
@ids.setter
def ids(self, value):
self._ids = value
self.mask = self._ids != self.tokenizer.pad_token_id
@property
def text(self):
if self.dtype == "text":
text = self._text
else:
ids = self.ids.tolist()
mask = self.mask
# remove masked tokens
ids_sanitized = []
for i in range(len(ids)):
_ids = [id for id, m in zip(ids[i], mask[i]) if m]
ids_sanitized.append(_ids)
text = self.tokenizer.batch_decode(
ids_sanitized,
skip_special_tokens=False,
clean_up_tokenization_spaces=True,
)
return text
@text.setter
def text(self, value):
if not isinstance(value, list) and not isinstance(value, tuple):
raise ValueError(
f"Text should be a list or tuple of strings. Got {type(value)}."
)
self._text = list(value)
self.mask = self.ids != self.tokenizer.pad_token_id
# derived properties
@property
def tokens(self):
ids = self.ids
tokens = [
self.tokenizer.convert_ids_to_tokens(ids[i].tolist())
for i in range(ids.shape[0])
]
return tokens
@tokens.setter
def tokens(self, value):
ids = [self.tokenizer.convert_tokens_to_ids(t) for t in value]
self.ids = torch.tensor(ids, device=self.device)
@property
def onehot(self):
ids = self.ids
one_hot_mask = torch.zeros(
(ids.shape[0], ids.shape[1], self.tokenizer.vocab_size), device=ids.device
)
one_hot_mask.scatter_(2, ids[:, :, None], 1)
return one_hot_mask
@onehot.setter
def onehot(self, value):
self.ids = torch.argmax(value, dim=2)
@property
def logprobs(self):
return torch.log_softmax(self.logits, dim=-1)
@logprobs.setter
def logprobs(self, value):
self.logits = value
@property
def bs(self):
if self.dtype == "probs":
bs = self.probs.shape[0]
elif self.dtype == "logits":
bs = self.logits.shape[0]
elif self.dtype == "ids":
bs = self.ids.shape[0]
elif self.dtype == "text":
bs = len(self._text)
return bs
@property
def seq_len(self):
if self.dtype == "probs":
seq_len = self.probs.shape[1]
elif self.dtype == "logits":
seq_len = self.logits.shape[1]
else:
seq_len = self.ids.shape[1]
return seq_len
def __len__(self):
raise NotImplementedError("len() is ambiguous, use .bs or .seq_len instead.")
@property
def is_hard(self):
return self.dtype == "ids" or self.dtype == "text"
def get_embed(self, embedding_matrix):
if self.is_hard:
embeds = embedding_matrix[self.ids.to(embedding_matrix.device)]
else:
embeds = torch.matmul(
self.probs.to(embedding_matrix.device), embedding_matrix
)
if torch.isnan(embeds).any() or torch.isinf(embeds).any():
raise RuntimeError(f"NaN in retrieved embeds: {embeds}")
return embeds
def get_entropy(self, average=True):
if self.is_hard:
if average:
entropy = torch.zeros(1, device=self.device)[0]
else:
entropy = torch.zeros_like(self.ids)
else:
max_logit = torch.max(self.logits, dim=2, keepdim=True)[0]
normalized_logits = self.logits - max_logit
Z = torch.sum(torch.exp(normalized_logits), dim=2) + self.eps
log_Z = torch.log(Z) + max_logit[:, :, 0]
entropy_per_token = (
log_Z - torch.sum(self.logits * torch.exp(normalized_logits), dim=2) / Z
)
if (
torch.isnan(entropy_per_token).any()
or torch.isinf(entropy_per_token).any()
):
tqdm.write(
f"NaN/inf in entropy: {entropy_per_token}, Z = {Z}, log_Z = {log_Z}, logits = {self.logits}"
)
normalized_entropy_per_token = entropy_per_token / torch.log(
torch.tensor(self.logits.shape[2]) + self.eps
)
if average:
# ignore masked out tokens
entropy_batch = torch.sum(
normalized_entropy_per_token * self.mask, dim=1
) / (torch.sum(self.mask, dim=1) + self.eps)
entropy = torch.mean(entropy_batch)
else:
entropy = normalized_entropy_per_token
return entropy
def to_html(self, colors=None, normalize=False, color_scheme=1):
if colors is None:
colors = self.get_entropy(average=False)
assert colors.shape == self.ids.shape
if normalize: # over dim 1
colors = colors / torch.max(colors, dim=1, keepdim=True)[0]
tokens = self.tokens
masks = self.mask
html_batch = []
for tok, mask, entr in zip(tokens, masks, colors):
html_list = []
for t, m, e0 in zip(tok, mask, entr):
e = 0 if math.isnan(e0) else e0
if m == 0:
color = (0, 1, 0)
else:
if color_scheme == 1:
color = (e, 0, 1 - e)
elif color_scheme == 2:
color = (e, e / 2, 0)
color_str = f"rgb({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)})"
t_escaped = t.replace("<", "<").replace(">", ">")
html = f"<span style='color: {color_str}'>{t_escaped}</span> "
html_list.append(html)
try:
html_joined = wandb.Html("".join(html_list))
html_batch.append(html_joined)
except:
tqdm.write("[Warning!!!] Saving HTML failed")
return html_batch
def __getitem__(self, _slice):
original_slice = _slice
if isinstance(_slice, tuple):
assert self._text is None
else:
_slice = (_slice,)
if len(_slice) == 1:
_slice = list(_slice)
_slice.append(slice(None, None, None))
_slice = tuple(_slice)
assert len(_slice) == 2
new_slice = add_dummy_dim_to_slice(_slice)
if self.dtype == "logits":
sliced_seq = Seq(
logits=self.logits[new_slice],
mask=self.mask[new_slice],
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "probs":
sliced_seq = Seq(
probs=self.probs[new_slice],
mask=self.mask[new_slice],
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "ids":
sliced_seq = Seq(
ids=self.ids[new_slice],
mask=self.mask[new_slice],
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "text":
if isinstance(original_slice, int):
original_slice = [original_slice]
sliced_seq = Seq(
text=[self._text[i] for i in original_slice],
mask=self.mask[new_slice],
tokenizer=self.tokenizer,
device=self.device,
)
else:
raise RuntimeError("No data to slice.")
return sliced_seq
def clone(self):
if self.dtype == "logits":
cloned_seq = Seq(
logits=self.logits.clone(),
mask=self.mask.clone(),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "probs":
cloned_seq = Seq(
probs=self.probs.clone(),
mask=self.mask.clone(),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "ids":
cloned_seq = Seq(
ids=self.ids.clone(),
mask=self.mask.clone(),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "text":
cloned_seq = Seq(
text=self.text,
mask=self.mask.clone(),
tokenizer=self.tokenizer,
device=self.device,
)
else:
raise RuntimeError("No data to clone.")
return cloned_seq
def detach(self):
if self.dtype == "logits":
detached_seq = Seq(
logits=self.logits.detach(),
mask=self.mask.detach(),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "probs":
detached_seq = Seq(
probs=self.probs.detach(),
mask=self.mask.detach(),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "ids":
detached_seq = Seq(
ids=self.ids.detach(),
mask=self.mask.detach(),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "text":
detached_seq = Seq(
text=self.text,
mask=self.mask.detach(),
tokenizer=self.tokenizer,
device=self.device,
)
else:
raise RuntimeError("No data to detach.")
return detached_seq
def repeat_interleave(self, times, dim=0):
if self.bs == 1:
raise ValueError(
"Trying to repeat_interleave sequence with bs=1, this might break broadcasting."
)
if self.dtype == "logits":
repeated_seq = Seq(
logits=self.logits.repeat_interleave(times, dim=dim),
mask=self.mask.repeat_interleave(times, dim=dim),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "probs":
repeated_seq = Seq(
probs=self.probs.repeat_interleave(times, dim=dim),
mask=self.mask.repeat_interleave(times, dim=dim),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "ids":
repeated_seq = Seq(
ids=self.ids.repeat_interleave(times, dim=dim),
mask=self.mask.repeat_interleave(times, dim=dim),
tokenizer=self.tokenizer,
device=self.device,
)
elif self.dtype == "text":
assert dim == 0
repeated_seq = Seq(
text=[item for item in self._text for i in range(times)],
mask=self.mask.repeat_interleave(times, dim=dim),
tokenizer=self.tokenizer,
device=self.device,
)
else:
raise RuntimeError("No data to repeat.")
return repeated_seq
def to(self, device):
if self.dtype == "logits":
moved_seq = Seq(
logits=self.logits.to(device),
mask=self.mask.to(device),
tokenizer=self.tokenizer,
device=device,
)
elif self.dtype == "probs":
moved_seq = Seq(
probs=self.probs.to(device),
mask=self.mask.to(device),
tokenizer=self.tokenizer,
device=device,
)
elif self.dtype == "ids":
moved_seq = Seq(
ids=self.ids.to(device),
mask=self.mask.to(device),
tokenizer=self.tokenizer,
device=device,
)
elif self.dtype == "text":
moved_seq = Seq(
text=self.text,
mask=self.mask.to(device),
tokenizer=self.tokenizer,
device=device,
)
else:
raise RuntimeError("No data to move.")
return moved_seq
def detach_(self):
if self.dtype == "logits":
self.logits.detach_()
elif self.dtype == "probs":
self.probs.detach_()
elif self.dtype == "ids":
self._ids.detach_()
elif self.dtype == "text":
pass
else:
raise RuntimeError("No data to detach.")
self.mask.detach_()
def append(self, seq):
if self.bs != 1 and seq.bs != 1 and self.bs != seq.bs:
raise ValueError(
f"Cannot broadcaset sequences with batch sizes {self.bs} and {seq.bs}."
)
mask_list = expand_for_broadcast_tensor([self.mask, seq.mask], dim=0)
self.mask = torch.cat(mask_list, dim=1)
if self.dtype == "logits":
logits_list = expand_for_broadcast_tensor([self.logits, seq.logits], dim=0)
self.logits = torch.cat(logits_list, dim=1)
elif self.dtype == "probs":
probs_list = expand_for_broadcast_tensor([self.probs, seq.probs], dim=0)
self.probs = torch.cat(probs_list, dim=1)
elif self.dtype == "ids":
ids_list = expand_for_broadcast_tensor([self.ids, seq.ids], dim=0)
self.ids = torch.cat(ids_list, dim=1)
elif self.dtype == "text":
raise NotImplementedError("Appending to text is not implemented.")
else:
raise RuntimeError("No data to append.")
@property
def dtype(self):
if self._logits is not None:
dtype = "logits"
elif self._probs is not None:
dtype = "probs"
elif self._ids is not None:
dtype = "ids"
elif self._text is not None:
dtype = "text"
else:
raise RuntimeError("No data to retrieve dtype from.")
return dtype
@property
def is_empty(self):
return False