-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsam_inference.py
431 lines (349 loc) · 12.8 KB
/
sam_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
Adapted from https://github.com/facebookresearch/segment-anything/blob/main/scripts/amg.py
"""
import argparse
import json
import os
from typing import Any, Dict, List
import cv2 # type: ignore
# from utils.manifold_utils import pathmgr
import numpy as np
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from tqdm import tqdm
parser = argparse.ArgumentParser(
description=(
"Runs automatic mask generation on an input image or directory of images, "
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
"as well as pycocotools if saving in RLE format."
)
)
# parser.add_argument(
# "--input",
# type=str,
# required=True,
# help="Path to either a single input image or folder of images.",
# )
parser.add_argument(
"--dataset",
type=str,
required=True,
help="The dataset for inference.",
)
parser.add_argument(
"--output",
type=str,
required=True,
help=(
"Path to the directory where masks will be output. Output will be either a folder "
"of PNGs per image or a single json with COCO-style masks."
),
)
parser.add_argument(
"--model-type",
type=str,
required=True,
help="The type of model to load, in ['default', 'vit_h', 'vit_l', 'vit_b']",
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="The path to the SAM checkpoint to use for mask generation.",
)
parser.add_argument(
"--device", type=str, default="cuda", help="The device to run generation on."
)
parser.add_argument(
"--convert-to-rle",
action="store_true",
help=(
"Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
"Requires pycocotools."
),
)
amg_settings = parser.add_argument_group("AMG Settings")
amg_settings.add_argument(
"--points-per-side",
type=int,
default=None,
help="Generate masks by sampling a grid over the image with this many points to a side.",
)
amg_settings.add_argument(
"--points-per-batch",
type=int,
default=None,
help="How many input points to process simultaneously in one batch.",
)
amg_settings.add_argument(
"--pred-iou-thresh",
type=float,
default=None,
help="Exclude masks with a predicted score from the model that is lower than this threshold.",
)
amg_settings.add_argument(
"--stability-score-thresh",
type=float,
default=None,
help="Exclude masks with a stability score lower than this threshold.",
)
amg_settings.add_argument(
"--stability-score-offset",
type=float,
default=None,
help="Larger values perturb the mask more when measuring stability score.",
)
amg_settings.add_argument(
"--box-nms-thresh",
type=float,
default=None,
help="The overlap threshold for excluding a duplicate mask.",
)
amg_settings.add_argument(
"--crop-n-layers",
type=int,
default=None,
help=(
"If >0, mask generation is run on smaller crops of the image to generate more masks. "
"The value sets how many different scales to crop at."
),
)
amg_settings.add_argument(
"--crop-nms-thresh",
type=float,
default=None,
help="The overlap threshold for excluding duplicate masks across different crops.",
)
amg_settings.add_argument(
"--crop-overlap-ratio",
type=int,
default=None,
help="Larger numbers mean image crops will overlap more.",
)
amg_settings.add_argument(
"--crop-n-points-downscale-factor",
type=int,
default=None,
help="The number of points-per-side in each layer of crop is reduced by this factor.",
)
amg_settings.add_argument(
"--min-mask-region-area",
type=int,
default=None,
help=(
"Disconnected mask regions or holes with area smaller than this value "
"in pixels are removed by postprocessing."
),
)
def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
metadata = [header]
for i, mask_data in enumerate(masks):
mask = mask_data["segmentation"]
filename = f"{i}.png"
cv2.imwrite(os.path.join(path, filename), mask * 255)
mask_metadata = [
str(i),
str(mask_data["area"]),
*[str(x) for x in mask_data["bbox"]],
*[str(x) for x in mask_data["point_coords"][0]],
str(mask_data["predicted_iou"]),
str(mask_data["stability_score"]),
*[str(x) for x in mask_data["crop_box"]],
]
row = ",".join(mask_metadata)
metadata.append(row)
metadata_path = os.path.join(path, "metadata.csv")
with open(metadata_path, "w") as f:
f.write("\n".join(metadata))
return
def get_amg_kwargs(args):
amg_kwargs = {
"points_per_side": args.points_per_side,
"points_per_batch": args.points_per_batch,
"pred_iou_thresh": args.pred_iou_thresh,
"stability_score_thresh": args.stability_score_thresh,
"stability_score_offset": args.stability_score_offset,
"box_nms_thresh": args.box_nms_thresh,
"crop_n_layers": args.crop_n_layers,
"crop_nms_thresh": args.crop_nms_thresh,
"crop_overlap_ratio": args.crop_overlap_ratio,
"crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
"min_mask_region_area": args.min_mask_region_area,
}
amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
return amg_kwargs
def main(args: argparse.Namespace) -> None:
print("Loading model...")
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
_ = sam.to(device=args.device)
output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
amg_kwargs = get_amg_kwargs(args)
generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
# if not os.path.isdir(args.input):
# targets = [args.input]
# else:
# targets = [
# f
# for f in os.listdir(args.input)
# if not os.path.isdir(os.path.join(args.input, f))
# ]
# targets = [os.path.join(args.input, f) for f in targets]
if args.dataset == "KITTI-2015" or args.dataset == "KITTI-2012":
dataset_root = (
YOUR_DIR + args.dataset
)
targets = []
for split in ["training", "testing"]:
with open(os.path.join(dataset_root, split, "image_list.txt"), "r") as f:
line = f.readlines()[0]
line = line.split(" ")
targets += [os.path.join(split, t) for t in line]
elif args.dataset == "KITTI-raw":
dataset_root = YOUR_DIR
targets = []
with open(os.path.join(dataset_root, "kitti_train_2f_sv.txt"), "r") as f:
lines = f.readlines()
for line in lines:
targets += line.split()
targets = np.unique(targets).tolist()
elif args.dataset == "Sintel":
dataset_root = YOUR_DIR
targets = []
for split in ["training", "test"]:
with open(os.path.join(dataset_root, split, "image_list.txt"), "r") as f:
line = f.readlines()[0]
line = line.split(" ")
targets += [os.path.join(split, t) for t in line]
elif args.dataset == "Sintel-raw":
dataset_root = YOUR_DIR
targets = []
with open(os.path.join(dataset_root, "sample_list.txt"), "r") as f:
lines = f.readlines()
for line in lines:
targets += line.split()
targets = np.unique(targets).tolist()
else:
raise ValueError(f"Unknown dataset: {args.dataset}")
os.makedirs(os.path.join(args.output, args.dataset), exist_ok=True)
for t in tqdm(targets):
print(f"Processing '{t}'...")
image = cv2.imread(os.path.join(dataset_root, t))
if image is None:
print(f"Could not load '{t}' as an image, skipping...")
continue
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = generator.generate(image)
base = os.path.splitext(t)[0]
save_base = os.path.join(args.output, args.dataset, base)
if not os.path.exists(os.path.dirname(save_base)):
os.makedirs(os.path.dirname(save_base), exist_ok=True)
if output_mode == "binary_mask":
os.makedirs(save_base, exist_ok=False)
write_masks_to_folder(masks, save_base)
else:
save_file = save_base + ".json"
with open(save_file, "w") as f:
json.dump(masks, f)
print("Done!")
def main_mask_to_full_seg():
home_dir = YOUR_DIR
import imageio
from pycocotools import mask as mask_utils
# ds = "KITTI-raw"
# ds = "Sintel-raw"
ds = "KITTI-2012/training"
with open("{}/data/{}/image_list_mv.txt".format(home_dir, ds), "r") as f:
lines = f.readlines()
img_list = [line.strip() for line in lines]
for img_name in tqdm(img_list):
with open(
"{}/results/sam_results/raw/{}/{}.json".format(home_dir, ds, img_name[:-4]),
"r",
) as f:
masks = json.load(f)
masks_map = np.array(
mask_utils.decode([mask["segmentation"] for mask in masks]),
dtype=np.float32,
)
H, W = masks_map.shape[:2]
masks_area = np.array([mask["area"] for mask in masks])
# drop mask if it equals the full frame
masks_map = masks_map[:, :, masks_area < H * W]
masks_area = masks_area[masks_area < H * W]
# sort the class ids by area, largest to smallest
area_order = np.argsort(masks_area)[::-1]
masks_area = masks_area[area_order]
masks_map = masks_map[:, :, area_order]
# add a "background mask" for pixels that are not included in any masks
masks_map_aug = np.concatenate((np.ones((H, W, 1)), masks_map), axis=-1)
masks_area_aug = np.array([H * W] + masks_area.tolist())
masks_area_aug = np.array(masks_area_aug, dtype=np.float32)
unified_mask = np.argmin(
masks_map_aug * masks_area_aug[None, None, :]
+ (1 - masks_map_aug) * (H * W + 1),
axis=-1,
)
unique_classes = np.unique(unified_mask)
mapping = np.zeros((unique_classes.max() + 1))
for i, cl in enumerate(unique_classes):
mapping[cl] = i
new_mask = mapping[unified_mask]
if new_mask.max() > 255: # almost not existent
print("More than 256 masks detect for image {}".format(img_name))
new_mask[new_mask > 255] = 0
new_mask = new_mask.astype(np.uint8)
save_path = "{}/results/sam_results/full_seg/{}/{}".format(
home_dir, ds, img_name
)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
imageio.imwrite(save_path, new_mask)
def main_mask_to_key_objects():
home_dir = YOUR_DIR
from pycocotools import mask as mask_utils
# ds = "KITTI-raw"
# ds = "Sintel-raw"
# ds = "KITTI-2015/training"
ds = "KITTI-2012/training"
# ds = "Sintel/training"
with open("{}/data/{}/image_list_mv.txt".format(home_dir, ds), "r") as f:
lines = f.readlines()
img_list = [line.strip() for line in lines]
for img_name in tqdm(img_list):
with open(
"{}/results/sam_results/raw/{}/{}.json".format(home_dir, ds, img_name[:-4]),
"r",
) as f:
masks = json.load(f)
masks_map = np.array(
mask_utils.decode([mask["segmentation"] for mask in masks]),
dtype=np.float32,
)
H, W = masks_map.shape[:2]
obj_masks = np.zeros((H, W, 0), dtype=np.uint8)
for mask_id in range(len(masks)):
mask = masks_map[:, :, mask_id]
w, h = masks[mask_id]["bbox"][2:4]
area = masks[mask_id]["area"]
if not (50 <= h <= 200 and 50 <= w <= 300):
continue
if area / (h * w) < 0.5:
continue
num_unique_masks = ((masks_map * mask[:, :, None]).sum((0, 1)) > 0).sum()
if num_unique_masks >= 6:
obj_masks = np.concatenate(
(obj_masks, (mask[:, :, None] * 255).astype(np.uint8)), axis=-1
)
save_path = "{}/results/sam_results/key_objects/{}/{}.npy".format(
home_dir, ds, img_name[:-4]
)
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
np.save(save_path, obj_masks)
def invoke_main() -> None:
args = parser.parse_args()
main(args)
# main_mask_to_full_seg()
# main_mask_to_key_objects()
if __name__ == "__main__":
invoke_main() # pragma: no cover