This repository was archived by the owner on Mar 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathweb_demo.py
187 lines (157 loc) · 6.95 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import gradio as gr
import numpy as np
import dnnlib
import time
import legacy
import torch
import glob
import os, sys
import cv2
from torch_utils import misc
from renderer import Renderer
from training.networks import Generator
device = torch.device('cuda')
port = int(sys.argv[1]) if len(sys.argv) > 1 else 21111
def set_random_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
def get_camera_traj(model, pitch, yaw, fov=12, batch_size=1, model_name='FFHQ512'):
gen = model.synthesis
range_u, range_v = gen.C.range_u, gen.C.range_v
if not (('car' in model_name) or ('Car' in model_name)): # TODO: hack, better option?
yaw, pitch = 0.5 * yaw, 0.3 * pitch
pitch = pitch + np.pi/2
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
else:
u = (yaw + 1) / 2
v = (pitch + 1) / 2
cam = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=device, fov=fov)
return cam
def check_name(model_name='FFHQ512'):
"""Gets model by name."""
if model_name == 'FFHQ512':
network_pkl = "./pretrained/ffhq_512.pkl"
elif model_name == 'FFHQ512v2':
network_pkl = "./pretrained/ffhq_512_eg3d.pkl"
elif model_name == 'AFHQ512':
network_pkl = "./pretrained/afhq_512.pkl"
elif model_name == 'MetFaces512':
network_pkl = "./pretrained/metfaces_512.pkl"
elif model_name == 'CompCars256':
network_pkl = "./pretrained/cars_256.pkl"
elif model_name == 'FFHQ1024':
network_pkl = "./pretrained/ffhq_1024.pkl"
else:
if os.path.isdir(model_name):
network_pkl = sorted(glob.glob(model_name + '/*.pkl'))[-1]
else:
network_pkl = model_name
return network_pkl
def get_model(network_pkl, render_option=None):
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as f:
network = legacy.load_network_pkl(f)
G = network['G_ema'].to(device) # type: ignore
with torch.no_grad():
G2 = Generator(*G.init_args, **G.init_kwargs).to(device)
misc.copy_params_and_buffers(G, G2, require_all=False)
print('compile and go through the initial image')
G2 = G2.eval()
init_z = torch.from_numpy(np.random.RandomState(0).rand(1, G2.z_dim)).to(device)
init_cam = get_camera_traj(G2, 0, 0, model_name=network_pkl)
dummy = G2(z=init_z, c=None, camera_matrices=init_cam, render_option=render_option, theta=0)
res = dummy['img'].shape[-1]
imgs = np.zeros((res, res//2, 3))
return G2, res, imgs
global_states = list(get_model(check_name()))
wss = [None, None]
def proc_seed(history, seed):
if isinstance(seed, str):
seed = 0
else:
seed = int(seed)
def f_synthesis(model_name, model_find, render_option, trunc, seed1, seed2, mix1, mix2, yaw, pitch, roll, fov):
history = gr.get_state() or {}
seeds = []
if model_find != "":
model_name = model_find
model_name = check_name(model_name)
if model_name != history.get("model_name", None):
model, res, imgs = get_model(model_name, render_option)
global_states[0] = model
global_states[1] = res
global_states[2] = imgs
model, res, imgs = global_states
for idx, seed in enumerate([seed1, seed2]):
if isinstance(seed, str):
seed = 0
else:
seed = int(seed)
if (seed != history.get(f'seed{idx}', -1)) or \
(model_name != history.get("model_name", None)) or \
(trunc != history.get("trunc", 0.7)) or \
(wss[idx] is None):
print(f'use seed {seed}')
set_random_seed(seed)
z = torch.from_numpy(np.random.RandomState(int(seed)).randn(1, model.z_dim).astype('float32')).to(device)
ws = model.mapping(z=z, c=None, truncation_psi=trunc)
img = model.get_final_output(styles=ws, camera_matrices=get_camera_traj(model, 0, 0), render_option=render_option)
ws = ws.detach().cpu().numpy()
img = img[0].permute(1,2,0).detach().cpu().numpy()
imgs[idx * res // 2: (1 + idx) * res // 2] = cv2.resize(
np.asarray(img).clip(-1, 1) * 0.5 + 0.5,
(res//2, res//2), cv2.INTER_AREA)
wss[idx] = ws
else:
seed = history[f'seed{idx}']
seeds += [seed]
history[f'seed{idx}'] = seed
history['trunc'] = trunc
history['model_name'] = model_name
gr.set_state(history)
set_random_seed(sum(seeds))
# style mixing (?)
ws1, ws2 = [torch.from_numpy(ws).to(device) for ws in wss]
ws = ws1.clone()
ws[:, :8] = ws1[:, :8] * mix1 + ws2[:, :8] * (1 - mix1)
ws[:, 8:] = ws1[:, 8:] * mix2 + ws2[:, 8:] * (1 - mix2)
start_t = time.time()
with torch.no_grad():
cam = get_camera_traj(model, pitch, yaw, fov, model_name=model_name)
image = model.get_final_output(
styles=ws, camera_matrices=cam,
theta=roll * np.pi,
render_option=render_option)
end_t = time.time()
image = image[0].permute(1,2,0).detach().cpu().numpy().clip(-1, 1) * 0.5 + 0.5
if imgs.shape[0] == image.shape[0]:
image = np.concatenate([imgs, image], 1)
else:
a = image.shape[0]
b = int(imgs.shape[1] / imgs.shape[0] * a)
print(f'resize {a} {b} {image.shape} {imgs.shape}')
image = np.concatenate([cv2.resize(imgs, (b, a), cv2.INTER_AREA), image], 1)
print(f'rendering time = {end_t-start_t:.4f}s')
return (image * 255).astype('uint8')
model_name = gr.inputs.Dropdown(['FFHQ512', 'FFHQ512v2', 'AFHQ512', 'MetFaces512', 'CompCars256', 'FFHQ1024'])
model_find = gr.inputs.Textbox(label="checkpoint path", default="")
render_option = gr.inputs.Textbox(label="rendering options", default='freeze_bg,steps:40')
trunc = gr.inputs.Slider(default=0.7, maximum=1.0, minimum=0.0, label='truncation trick')
seed1 = gr.inputs.Number(default=1, label="seed1")
seed2 = gr.inputs.Number(default=9, label="seed2")
mix1 = gr.inputs.Slider(minimum=0, maximum=1, default=0, label="linear mixing ratio (geometry)")
mix2 = gr.inputs.Slider(minimum=0, maximum=1, default=0, label="linear mixing ratio (apparence)")
yaw = gr.inputs.Slider(minimum=-1, maximum=1, default=0, label="yaw")
pitch = gr.inputs.Slider(minimum=-1, maximum=1, default=0, label="pitch")
roll = gr.inputs.Slider(minimum=-1, maximum=1, default=0, label="roll (optional, not suggested)")
fov = gr.inputs.Slider(minimum=9, maximum=15, default=12, label="fov")
css = ".output_image {height: 40rem !important; width: 100% !important;}"
gr.Interface(fn=f_synthesis,
inputs=[model_name, model_find, render_option, trunc, seed1, seed2, mix1, mix2, yaw, pitch, roll, fov],
outputs="image",
layout='unaligned',
css=css,
live=True,
server_port=port).launch()