This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 263
/
Copy pathevaluate.py
executable file
·134 lines (108 loc) · 3.87 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import argparse
import logging
import json
import numpy as np
import os
import trimesh
import deep_sdf
import deep_sdf.workspace as ws
def evaluate(experiment_directory, checkpoint, data_dir, split_filename):
with open(split_filename, "r") as f:
split = json.load(f)
chamfer_results = []
for dataset in split:
for class_name in split[dataset]:
for instance_name in split[dataset][class_name]:
logging.debug(
"evaluating " + os.path.join(dataset, class_name, instance_name)
)
reconstructed_mesh_filename = ws.get_reconstructed_mesh_filename(
experiment_directory, checkpoint, dataset, class_name, instance_name
)
logging.debug(
'reconstructed mesh is "' + reconstructed_mesh_filename + '"'
)
ground_truth_samples_filename = os.path.join(
data_dir,
"SurfaceSamples",
dataset,
class_name,
instance_name + ".ply",
)
logging.debug(
"ground truth samples are " + ground_truth_samples_filename
)
normalization_params_filename = os.path.join(
data_dir,
"NormalizationParameters",
dataset,
class_name,
instance_name + ".npz",
)
logging.debug(
"normalization params are " + ground_truth_samples_filename
)
ground_truth_points = trimesh.load(ground_truth_samples_filename)
reconstruction = trimesh.load(reconstructed_mesh_filename)
normalization_params = np.load(normalization_params_filename)
chamfer_dist = deep_sdf.metrics.chamfer.compute_trimesh_chamfer(
ground_truth_points,
reconstruction,
normalization_params["offset"],
normalization_params["scale"],
)
logging.debug("chamfer distance: " + str(chamfer_dist))
chamfer_results.append(
(os.path.join(dataset, class_name, instance_name), chamfer_dist)
)
with open(
os.path.join(
ws.get_evaluation_dir(experiment_directory, checkpoint, True), "chamfer.csv"
),
"w",
) as f:
f.write("shape, chamfer_dist\n")
for result in chamfer_results:
f.write("{}, {}\n".format(result[0], result[1]))
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(description="Evaluate a DeepSDF autodecoder")
arg_parser.add_argument(
"--experiment",
"-e",
dest="experiment_directory",
required=True,
help="The experiment directory. This directory should include experiment specifications in "
+ '"specs.json", and logging will be done in this directory as well.',
)
arg_parser.add_argument(
"--checkpoint",
"-c",
dest="checkpoint",
default="latest",
help="The checkpoint to test.",
)
arg_parser.add_argument(
"--data",
"-d",
dest="data_source",
required=True,
help="The data source directory.",
)
arg_parser.add_argument(
"--split",
"-s",
dest="split_filename",
required=True,
help="The split to evaluate.",
)
deep_sdf.add_common_args(arg_parser)
args = arg_parser.parse_args()
deep_sdf.configure_logging(args)
evaluate(
args.experiment_directory,
args.checkpoint,
args.data_source,
args.split_filename,
)