-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathscannet.py
359 lines (316 loc) · 13.3 KB
/
scannet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Modified from https://github.com/facebookresearch/votenet
Dataset for object bounding box regression.
An axis aligned bounding box is parameterized by (cx,cy,cz) and (dx,dy,dz)
where (cx,cy,cz) is the center point of the box, dx is the x-axis length of the box.
"""
import os
import sys
import numpy as np
import torch
import utils.pc_util as pc_util
from torch.utils.data import Dataset
from utils.box_util import (flip_axis_to_camera_np, flip_axis_to_camera_tensor,
get_3d_box_batch_np, get_3d_box_batch_tensor)
from utils.pc_util import scale_points, shift_scale_points
from utils.random_cuboid import RandomCuboid
IGNORE_LABEL = -100
MEAN_COLOR_RGB = np.array([109.8, 97.2, 83.8])
DATASET_ROOT_DIR = "" ## Replace with path to dataset
DATASET_METADATA_DIR = "" ## Replace with path to dataset
class ScannetDatasetConfig(object):
def __init__(self):
self.num_semcls = 18
self.num_angle_bin = 1
self.max_num_obj = 64
self.type2class = {
"cabinet": 0,
"bed": 1,
"chair": 2,
"sofa": 3,
"table": 4,
"door": 5,
"window": 6,
"bookshelf": 7,
"picture": 8,
"counter": 9,
"desk": 10,
"curtain": 11,
"refrigerator": 12,
"showercurtrain": 13,
"toilet": 14,
"sink": 15,
"bathtub": 16,
"garbagebin": 17,
}
self.class2type = {self.type2class[t]: t for t in self.type2class}
self.nyu40ids = np.array(
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]
)
self.nyu40id2class = {
nyu40id: i for i, nyu40id in enumerate(list(self.nyu40ids))
}
# Semantic Segmentation Classes. Not used in 3DETR
self.num_class_semseg = 20
self.type2class_semseg = {
"wall": 0,
"floor": 1,
"cabinet": 2,
"bed": 3,
"chair": 4,
"sofa": 5,
"table": 6,
"door": 7,
"window": 8,
"bookshelf": 9,
"picture": 10,
"counter": 11,
"desk": 12,
"curtain": 13,
"refrigerator": 14,
"showercurtrain": 15,
"toilet": 16,
"sink": 17,
"bathtub": 18,
"garbagebin": 19,
}
self.class2type_semseg = {
self.type2class_semseg[t]: t for t in self.type2class_semseg
}
self.nyu40ids_semseg = np.array(
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]
)
self.nyu40id2class_semseg = {
nyu40id: i for i, nyu40id in enumerate(list(self.nyu40ids_semseg))
}
def angle2class(self, angle):
raise ValueError("ScanNet does not have rotated bounding boxes.")
def class2anglebatch_tensor(self, pred_cls, residual, to_label_format=True):
zero_angle = torch.zeros(
(pred_cls.shape[0], pred_cls.shape[1]),
dtype=torch.float32,
device=pred_cls.device,
)
return zero_angle
def class2anglebatch(self, pred_cls, residual, to_label_format=True):
zero_angle = np.zeros(pred_cls.shape[0], dtype=np.float32)
return zero_angle
def param2obb(
self,
center,
heading_class,
heading_residual,
size_class,
size_residual,
box_size=None,
):
heading_angle = self.class2angle(heading_class, heading_residual)
if box_size is None:
box_size = self.class2size(int(size_class), size_residual)
obb = np.zeros((7,))
obb[0:3] = center
obb[3:6] = box_size
obb[6] = heading_angle * -1
return obb
def box_parametrization_to_corners(self, box_center_unnorm, box_size, box_angle):
box_center_upright = flip_axis_to_camera_tensor(box_center_unnorm)
boxes = get_3d_box_batch_tensor(box_size, box_angle, box_center_upright)
return boxes
def box_parametrization_to_corners_np(self, box_center_unnorm, box_size, box_angle):
box_center_upright = flip_axis_to_camera_np(box_center_unnorm)
boxes = get_3d_box_batch_np(box_size, box_angle, box_center_upright)
return boxes
@staticmethod
def rotate_aligned_boxes(input_boxes, rot_mat):
centers, lengths = input_boxes[:, 0:3], input_boxes[:, 3:6]
new_centers = np.dot(centers, np.transpose(rot_mat))
dx, dy = lengths[:, 0] / 2.0, lengths[:, 1] / 2.0
new_x = np.zeros((dx.shape[0], 4))
new_y = np.zeros((dx.shape[0], 4))
for i, crnr in enumerate([(-1, -1), (1, -1), (1, 1), (-1, 1)]):
crnrs = np.zeros((dx.shape[0], 3))
crnrs[:, 0] = crnr[0] * dx
crnrs[:, 1] = crnr[1] * dy
crnrs = np.dot(crnrs, np.transpose(rot_mat))
new_x[:, i] = crnrs[:, 0]
new_y[:, i] = crnrs[:, 1]
new_dx = 2.0 * np.max(new_x, 1)
new_dy = 2.0 * np.max(new_y, 1)
new_lengths = np.stack((new_dx, new_dy, lengths[:, 2]), axis=1)
return np.concatenate([new_centers, new_lengths], axis=1)
class ScannetDetectionDataset(Dataset):
def __init__(
self,
dataset_config,
split_set="train",
root_dir=None,
meta_data_dir=None,
num_points=40000,
use_color=False,
use_height=False,
augment=False,
use_random_cuboid=True,
random_cuboid_min_points=30000,
):
self.dataset_config = dataset_config
assert split_set in ["train", "val"]
if root_dir is None:
root_dir = DATASET_ROOT_DIR
if meta_data_dir is None:
meta_data_dir = DATASET_METADATA_DIR
self.data_path = root_dir
all_scan_names = list(
set(
[
os.path.basename(x)[0:12]
for x in os.listdir(self.data_path)
if x.startswith("scene")
]
)
)
if split_set == "all":
self.scan_names = all_scan_names
elif split_set in ["train", "val", "test"]:
split_filenames = os.path.join(meta_data_dir, f"scannetv2_{split_set}.txt")
with open(split_filenames, "r") as f:
self.scan_names = f.read().splitlines()
# remove unavailiable scans
num_scans = len(self.scan_names)
self.scan_names = [
sname for sname in self.scan_names if sname in all_scan_names
]
print(f"kept {len(self.scan_names)} scans out of {num_scans}")
else:
raise ValueError(f"Unknown split name {split_set}")
self.num_points = num_points
self.use_color = use_color
self.use_height = use_height
self.augment = augment
self.use_random_cuboid = use_random_cuboid
self.random_cuboid_augmentor = RandomCuboid(min_points=random_cuboid_min_points)
self.center_normalizing_range = [
np.zeros((1, 3), dtype=np.float32),
np.ones((1, 3), dtype=np.float32),
]
def __len__(self):
return len(self.scan_names)
def __getitem__(self, idx):
scan_name = self.scan_names[idx]
mesh_vertices = np.load(os.path.join(self.data_path, scan_name) + "_vert.npy")
instance_labels = np.load(
os.path.join(self.data_path, scan_name) + "_ins_label.npy"
)
semantic_labels = np.load(
os.path.join(self.data_path, scan_name) + "_sem_label.npy"
)
instance_bboxes = np.load(os.path.join(self.data_path, scan_name) + "_bbox.npy")
if not self.use_color:
point_cloud = mesh_vertices[:, 0:3] # do not use color for now
pcl_color = mesh_vertices[:, 3:6]
else:
point_cloud = mesh_vertices[:, 0:6]
point_cloud[:, 3:] = (point_cloud[:, 3:] - MEAN_COLOR_RGB) / 256.0
pcl_color = point_cloud[:, 3:]
if self.use_height:
floor_height = np.percentile(point_cloud[:, 2], 0.99)
height = point_cloud[:, 2] - floor_height
point_cloud = np.concatenate([point_cloud, np.expand_dims(height, 1)], 1)
# ------------------------------- LABELS ------------------------------
MAX_NUM_OBJ = self.dataset_config.max_num_obj
target_bboxes = np.zeros((MAX_NUM_OBJ, 6), dtype=np.float32)
target_bboxes_mask = np.zeros((MAX_NUM_OBJ), dtype=np.float32)
angle_classes = np.zeros((MAX_NUM_OBJ,), dtype=np.int64)
angle_residuals = np.zeros((MAX_NUM_OBJ,), dtype=np.float32)
raw_sizes = np.zeros((MAX_NUM_OBJ, 3), dtype=np.float32)
raw_angles = np.zeros((MAX_NUM_OBJ,), dtype=np.float32)
if self.augment and self.use_random_cuboid:
(
point_cloud,
instance_bboxes,
per_point_labels,
) = self.random_cuboid_augmentor(
point_cloud, instance_bboxes, [instance_labels, semantic_labels]
)
instance_labels = per_point_labels[0]
semantic_labels = per_point_labels[1]
point_cloud, choices = pc_util.random_sampling(
point_cloud, self.num_points, return_choices=True
)
instance_labels = instance_labels[choices]
semantic_labels = semantic_labels[choices]
sem_seg_labels = np.ones_like(semantic_labels) * IGNORE_LABEL
for _c in self.dataset_config.nyu40ids_semseg:
sem_seg_labels[
semantic_labels == _c
] = self.dataset_config.nyu40id2class_semseg[_c]
pcl_color = pcl_color[choices]
target_bboxes_mask[0 : instance_bboxes.shape[0]] = 1
target_bboxes[0 : instance_bboxes.shape[0], :] = instance_bboxes[:, 0:6]
# ------------------------------- DATA AUGMENTATION ------------------------------
if self.augment:
if np.random.random() > 0.5:
# Flipping along the YZ plane
point_cloud[:, 0] = -1 * point_cloud[:, 0]
target_bboxes[:, 0] = -1 * target_bboxes[:, 0]
if np.random.random() > 0.5:
# Flipping along the XZ plane
point_cloud[:, 1] = -1 * point_cloud[:, 1]
target_bboxes[:, 1] = -1 * target_bboxes[:, 1]
# Rotation along up-axis/Z-axis
rot_angle = (np.random.random() * np.pi / 18) - np.pi / 36 # -5 ~ +5 degree
rot_mat = pc_util.rotz(rot_angle)
point_cloud[:, 0:3] = np.dot(point_cloud[:, 0:3], np.transpose(rot_mat))
target_bboxes = self.dataset_config.rotate_aligned_boxes(
target_bboxes, rot_mat
)
raw_sizes = target_bboxes[:, 3:6]
point_cloud_dims_min = point_cloud.min(axis=0)[:3]
point_cloud_dims_max = point_cloud.max(axis=0)[:3]
box_centers = target_bboxes.astype(np.float32)[:, 0:3]
box_centers_normalized = shift_scale_points(
box_centers[None, ...],
src_range=[
point_cloud_dims_min[None, ...],
point_cloud_dims_max[None, ...],
],
dst_range=self.center_normalizing_range,
)
box_centers_normalized = box_centers_normalized.squeeze(0)
box_centers_normalized = box_centers_normalized * target_bboxes_mask[..., None]
mult_factor = point_cloud_dims_max - point_cloud_dims_min
box_sizes_normalized = scale_points(
raw_sizes.astype(np.float32)[None, ...],
mult_factor=1.0 / mult_factor[None, ...],
)
box_sizes_normalized = box_sizes_normalized.squeeze(0)
box_corners = self.dataset_config.box_parametrization_to_corners_np(
box_centers[None, ...],
raw_sizes.astype(np.float32)[None, ...],
raw_angles.astype(np.float32)[None, ...],
)
box_corners = box_corners.squeeze(0)
ret_dict = {}
ret_dict["point_clouds"] = point_cloud.astype(np.float32)
ret_dict["gt_box_corners"] = box_corners.astype(np.float32)
ret_dict["gt_box_centers"] = box_centers.astype(np.float32)
ret_dict["gt_box_centers_normalized"] = box_centers_normalized.astype(
np.float32
)
ret_dict["gt_angle_class_label"] = angle_classes.astype(np.int64)
ret_dict["gt_angle_residual_label"] = angle_residuals.astype(np.float32)
target_bboxes_semcls = np.zeros((MAX_NUM_OBJ))
target_bboxes_semcls[0 : instance_bboxes.shape[0]] = [
self.dataset_config.nyu40id2class[int(x)]
for x in instance_bboxes[:, -1][0 : instance_bboxes.shape[0]]
]
ret_dict["gt_box_sem_cls_label"] = target_bboxes_semcls.astype(np.int64)
ret_dict["gt_box_present"] = target_bboxes_mask.astype(np.float32)
ret_dict["scan_idx"] = np.array(idx).astype(np.int64)
ret_dict["pcl_color"] = pcl_color
ret_dict["gt_box_sizes"] = raw_sizes.astype(np.float32)
ret_dict["gt_box_sizes_normalized"] = box_sizes_normalized.astype(np.float32)
ret_dict["gt_box_angles"] = raw_angles.astype(np.float32)
ret_dict["point_cloud_dims_min"] = point_cloud_dims_min.astype(np.float32)
ret_dict["point_cloud_dims_max"] = point_cloud_dims_max.astype(np.float32)
return ret_dict