This repository has been archived by the owner on Nov 2, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathmodel.lua
203 lines (187 loc) · 7.2 KB
/
model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
-- Copyright (c) 2016-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
require('nn')
require('nngraph')
paths.dofile('linear_multi.lua')
local function nonlin()
if g_opts.nonlin == 'tanh' then
return nn.Tanh()
elseif g_opts.nonlin == 'relu' then
return nn.ReLU()
elseif g_opts.nonlin == 'none' then
return nn.Identity()
else
error('wrong nonlin')
end
end
local function build_encoder(hidsz)
local in_dim = (g_opts.visibility*2+1)^2 * g_opts.nwords
if g_opts.encoder_lut then
in_dim = in_dim + 1 -- for NIL padding
g_opts.encoder_lut_nil = in_dim
local m = nn.LookupTable(in_dim, hidsz)
g_modules['encoder_lut'] = m
local s = nn.Sequential()
s:add(m)
s:add(nn.Sum(2))
s:add(nn.Add(hidsz)) -- bias
g_modules['encoder_sum'] = s.modules[3]
return s
else
local m = nn.Linear(in_dim, hidsz)
g_modules['encoder_linear'] = m
return m
end
end
local function build_rnn(input, prev_hid, comm_in, model_ids)
local pre_hid = {}
table.insert(pre_hid, build_encoder(g_opts.hidsz)(input))
table.insert(pre_hid, linear_multi(g_opts.hidsz, g_opts.hidsz, model_ids, prev_hid))
g_modules['pre_hid'] = pre_hid[2].data.module
if comm_in then table.insert(pre_hid, comm_in) end
local hidstate = nonlin()(nn.CAddTable()(pre_hid))
return hidstate
end
local function build_lstm(input, prev_hid, prev_cell, comm_in, model_ids)
local pre_hid = {}
table.insert(pre_hid, build_encoder(g_opts.hidsz * 4)(input))
table.insert(pre_hid, linear_multi(g_opts.hidsz, g_opts.hidsz * 4, model_ids, prev_hid))
if comm_in then table.insert(pre_hid, comm_in) end
local A = nn.CAddTable()(pre_hid)
local B = nn.View(4, g_opts.hidsz):setNumInputDims(2)(A)
local C = nn.SplitTable(1, 2)(B)
local gate_forget = nn.Sigmoid()(nn.SelectTable(1)(C))
local gate_write = nn.Sigmoid()(nn.SelectTable(2)(C))
local gate_read = nn.Sigmoid()(nn.SelectTable(3)(C))
local in2c = nonlin()(nn.SelectTable(4)(C))
local cellstate = nn.CAddTable()({
nn.CMulTable()({prev_cell, gate_forget}),
nn.CMulTable()({in2c, gate_write})
})
local hidstate = nn.CMulTable()({nonlin()(cellstate), gate_read})
return hidstate, cellstate
end
function g_build_model()
g_model_inputs = {}
g_model_outputs = {}
local in_mods = {}
local out_mods = {}
local prev_hid = nn.Identity()()
g_modules['prev_hid'] = prev_hid.data.module
local input = nn.Identity()()
table.insert(in_mods, input)
g_model_inputs['input'] = #in_mods
table.insert(in_mods, prev_hid)
g_model_inputs['prev_hid'] = #in_mods
local model_ids = nn.Identity()()
if g_opts.nmodels > 1 then
table.insert(in_mods, model_ids)
g_model_inputs['model_ids'] = #in_mods
end
local comm2hid
if g_opts.comm then
local comm_in = nn.Identity()()
table.insert(in_mods, comm_in)
g_model_inputs['comm_in'] = #in_mods
g_modules['comm_in'] = comm_in.data.module
comm2hid = nn.Sum(2)(comm_in)
if g_opts.comm_encoder == 1 then
if g_opts.model == 'lstm' then
comm2hid = linear_multi(g_opts.hidsz, g_opts.hidsz * 4, model_ids, comm2hid)
else
comm2hid = linear_multi(g_opts.hidsz, g_opts.hidsz, model_ids, comm2hid)
end
g_modules['comm_encoder'] = comm2hid
end
end
local hidstate
if g_opts.model == 'mlp' or g_opts.model == 'rnn' then
hidstate = build_rnn(input, prev_hid, comm2hid, model_ids)
elseif g_opts.model == 'lstm' then
local prev_cell = nn.Identity()()
g_modules['prev_cell'] = prev_cell.data.module
table.insert(in_mods, prev_cell)
g_model_inputs['prev_cell'] = #in_mods
local cellstate
hidstate, cellstate = build_lstm(input, prev_hid, prev_cell, comm2hid, model_ids)
table.insert(out_mods, cellstate)
g_model_outputs['cellstate'] = #out_mods
else
error('model not supported')
end
local action = linear_multi(g_opts.hidsz, g_opts.nactions, model_ids, hidstate)
local action_prob = nn.LogSoftMax()(action)
local baseline = linear_multi(g_opts.hidsz, 1, model_ids, hidstate)
table.insert(out_mods, action_prob)
g_model_outputs['action_prob'] = #out_mods
table.insert(out_mods, baseline)
g_model_outputs['baseline'] = #out_mods
table.insert(out_mods, hidstate)
g_model_outputs['hidstate'] = #out_mods
if g_opts.comm then
local comm_out
if g_opts.fully_connected then
-- use different params depending on agent ID
comm_out = linear_multi(g_opts.hidsz, g_opts.hidsz * g_opts.nagents, model_ids, hidstate)
else
comm_out = hidstate
if g_opts.comm_decoder >= 1 then
comm_out = linear_multi(g_opts.hidsz, g_opts.hidsz, model_ids, comm_out)
g_modules['comm_decoder'] = comm_out
if g_opts.comm_decoder == 2 then
comm_out = nonlin()(comm_out)
end
end
comm_out = nn.Contiguous()(nn.Replicate(g_opts.nagents, 2)(comm_out))
end
table.insert(out_mods, comm_out)
g_model_outputs['comm_out'] = #out_mods
end
if g_opts.nactions_comm > 1 then
local action_comm = linear_multi(g_opts.hidsz, g_opts.nactions_comm, model_ids, hidstate)
action_comm = nn.LogSoftMax()(action_comm)
table.insert(out_mods, action_comm)
g_model_outputs['action_comm'] = #out_mods
end
local model = nn.gModule(in_mods, out_mods)
return model
end
function g_init_model()
g_modules = {}
g_model = g_build_model()
g_paramx, g_paramdx = g_model:getParameters()
if g_opts.init_std > 0 then
g_paramx:normal(0, g_opts.init_std)
end
if g_opts.comm_zero_init then
if g_opts.nmodels == 1 then
if g_modules['comm_encoder'] then
g_modules['comm_encoder'].data.module.weight:zero()
g_modules['comm_encoder'].data.module.bias:zero()
end
if g_modules['comm_decoder'] then
g_modules['comm_decoder'].data.module.weight:zero()
g_modules['comm_decoder'].data.module.bias:zero()
end
else
if g_modules['comm_encoder'] then
g_modules['comm_encoder'].weight_lut.data.module.weight:zero()
g_modules['comm_encoder'].bias_lut.data.module.weight:zero()
end
if g_modules['comm_decoder'] then
g_modules['comm_decoder'].weight_lut.data.module.weight:zero()
g_modules['comm_decoder'].bias_lut.data.module.weight:zero()
end
end
end
if g_opts.encoder_lut then
-- zero NIL embedding
g_modules['encoder_lut'].weight[g_opts.encoder_lut_nil]:zero()
end
g_bl_loss = nn.MSECriterion()
g_bl_loss.sizeAverage = false
end