-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLSTM_trajectory.py
executable file
·401 lines (305 loc) · 14.4 KB
/
LSTM_trajectory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
Copyright 2021, Eyuell H Gebremedhin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
"""
Inspiration used from A. Rasouli, I. Kotseruba, T. Kunic, and J. Tsotsos, "PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and
Trajectory Prediction", ICCV 2019.
"""
import numpy as np
import os
import pickle
from os.path import isfile, exists
from os import makedirs
import pathlib
import sys
from keras.layers import Input, LSTM, Dense, Concatenate, Flatten
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.models import Sequential, Model, load_model
from prettytable import PrettyTable
import time
from datetime import timedelta
"""
A Vanilla LSTM Model with two basic layers of LSTM and Dense
128 number of batchs
150 number of epochs
256 number of filters for LSTM
10% dropout and recurrent dropout for reducing overfitting
a uniform kernel initializer
val_loss monitor (loss could also be good)
"""
def get_sett():
n_batch = 128
n_epochs = 150
n_filters = 256
return n_batch, n_epochs, n_filters
def get_callback():
early_stop = EarlyStopping(monitor='val_loss',
min_delta=0.0001,
patience=15,
verbose=1)
plateau_sch = ReduceLROnPlateau(monitor='val_loss',
factor=0.2,
patience=5,
min_lr=0.0000001,
verbose = 1)
call_backs = [early_stop, plateau_sch]
return call_backs
def check_path(f_path):
if not exists(f_path):
makedirs(f_path)
def get_data(data_name, file_name, data_path):
if data_name:
print("\nWorking on", data_name)
path_line = os.path.join(data_path, file_name)
if os.path.exists(path_line):
with open(path_line, 'rb') as fid:
try:
dt = pickle.load(fid)
except:
dt = pickle.load(fid, encoding='bytes')
return True, dt
else:
return False, None
def get_performance(Ytest, test_results, title, axis_n):
perf = {}
performance = np.square(Ytest - test_results)
perf['mse-5'] = performance[:, 0:5, :].mean(axis=None)
perf['mse-10'] = performance[:, 0:10, :].mean(axis=None)
perf['mse-15'] = performance[:, 0:15, :].mean(axis=None)
perf['mse-15th'] = performance[:,15, :].mean(axis=None)
perf['mse-30'] = performance[:, 0:30, :].mean(axis=None)
perf['mse-45'] = performance[:, 0:45, :].mean(axis=None)
perf['mse-last'] = performance[:, -1, :].mean(axis=None)
print()
t = PrettyTable(['MSE'])
t.title = title
t.align = "l"
t.add_row(['mse-5 : ' + str(round(perf['mse-5'], 4)) ])
t.add_row(['mse-10 : ' + str(round(perf['mse-10'], 4)) ])
t.add_row(['mse-15 : ' + str(round(perf['mse-15'], 4)) ])
t.add_row(['mse-15th : ' + str(round(perf['mse-15th'], 4)) ])
t.add_row(['mse-30 : ' + str(round(perf['mse-30'], 4)) ])
t.add_row(['mse-45 : ' + str(round(perf['mse-45'], 4)) ])
t.add_row(['mse-last : ' + str(round(perf['mse-last'], 4)) ])
print(t)
def get_center_perf (Ytest, test_results, X_test_Box_Center, Y_test_Box_Center, title, axis_n):
perf = {}
results_org = test_results + np.expand_dims(X_test_Box_Center[0][:, 0, 0:4], axis=1)
# Performance measures for centers
res_centers = np.zeros(shape=(test_results.shape[0], test_results.shape[1], 2))
centers = np.zeros(shape=(test_results.shape[0], test_results.shape[1], 2))
for b in range(test_results.shape[0]):
for s in range(test_results.shape[1]):
centers[b, s, 0] = (Y_test_Box_Center[b, s, 2] + Y_test_Box_Center[b, s, 0]) / 2
centers[b, s, 1] = (Y_test_Box_Center[b, s, 3] + Y_test_Box_Center[b, s, 1]) / 2
res_centers[b, s, 0] = (results_org[b, s, 2] + results_org[b, s, 0]) / 2
res_centers[b, s, 1] = (results_org[b, s, 3] + results_org[b, s, 1]) / 2
c_performance = np.square(centers - res_centers)
perf['c-mse-5'] = c_performance[:, 0:5, :].mean(axis=None)
perf['c-mse-10'] = c_performance[:, 0:10, :].mean(axis=None)
perf['c-mse-15'] = c_performance[:, 0:15, :].mean(axis=None)
perf['c-mse-15th'] = c_performance[:,15, :].mean(axis=None)
perf['c-mse-30'] = c_performance[:, 0:30, :].mean(axis=None)
perf['c-mse-45'] = c_performance[:, 0:45, :].mean(axis=None)
perf['c-mse-last'] = c_performance[:, -1, :].mean(axis=None)
t = PrettyTable(['C-MSE'])
t.title = title
t.align = "l"
t.add_row(['c-mse-5 : ' + str(round(perf['c-mse-5'], 4)) ])
t.add_row(['c-mse-10 : ' + str(round(perf['c-mse-10'], 4)) ])
t.add_row(['c-mse-15 : ' + str(round(perf['c-mse-15'], 4)) ])
t.add_row(['c-mse-15th : ' + str(round(perf['c-mse-15th'], 4)) ])
t.add_row(['c-mse-30 : ' + str(round(perf['c-mse-30'], 4)) ])
t.add_row(['c-mse-45 : ' + str(round(perf['c-mse-45'], 4)) ])
t.add_row(['c-mse-last : ' + str(round(perf['c-mse-last'], 4)) ])
print("\n")
print(t)
print("\n")
def lstm_model (first_shape, second_shape, n_filr, model_name):
input_layer = Input(shape=(first_shape[1], first_shape[2]), name='input_layer')
lstm_layer = LSTM(n_filr, return_state=True, return_sequences=True, kernel_initializer='uniform', dropout=0.1, recurrent_dropout=0.1, activation='relu', name='lstm_layer')(input_layer)
lstm_states = lstm_layer[1:]
output_dense = Dense(second_shape[1] * second_shape [2], kernel_initializer='uniform', activation='linear', name='output_dense')(lstm_states[0])
model = Model(inputs=[input_layer], outputs=output_dense, name=model_name)
#optimizer = RMSprop(lr=0.0001)
optimizer = 'adam'
model.compile(optimizer=optimizer, loss='mse', metrics=['accuracy'])
return model
def shorten_dim(arr_list):
m, n, o = arr_list.shape
return arr_list.reshape(m, n * o)
def expand_dim(arr_list, seq):
m, n = arr_list.shape
return arr_list.reshape(m, seq, int(n/seq))
def train_bbox(n_batch, n_epochs, call_backs, n_filters, traject_model_file, data_path):
# For B_Box Prediction
print("\n=============================================")
print("Train and Predict on Bounding Box-Trajectory:")
print("=============================================")
data_exists, Xtrain = get_data('Xtrain, Ytrain, and Val_data', 'tra_xTrain.pkl', data_path) # Xtrain 14, 4, BB
data_exists, Ytrain = get_data('', 'tra_yTrain.pkl', data_path) # Ytrain 45, 4, BB
data_exists, Val_data = get_data('', 'tra_valData.pkl', data_path) # Val_data 14, 4, BB
if data_exists:
model = lstm_model(Xtrain[0].shape, Ytrain.shape, n_filters, 'LSTM-Traject-B Box') #Only the b-box is taken, no intention, no speed
print()
model.summary()
Y = shorten_dim(Ytrain)
model.fit(x=Xtrain[0],
y=Y,
validation_data=[Val_data[0][0],shorten_dim(Val_data[1])],
batch_size=n_batch,
epochs=n_epochs,
callbacks=call_backs,
verbose=1)
# Save trained model
model.save(traject_model_file)
#del Xtrain, Ytrain, Val_data # clear memory
return model
else:
print("\nMissing Data\n")
return None
def predict_bbox(model, n_batch, data_path, data_set):
data_exists, X_test = get_data('Bounding Box Related X and Y data', 'box_intent_speed_data.pkl', data_path) # F_X_test_Box 14, 4 BB
data_exists, Y_test = get_data('', 'box_target_speed_data.pkl', data_path) # F_Y_test_Box 45, 4 BB
data_exists, X_text_box = get_data('', 'box_centers_test_data.pkl', data_path) # F_X_test_box_center, 14, 4 BB
data_exists, Y_text_box = get_data('', 'box_centers_target_data.pkl', data_path) # F_Y_test_box_center, 45, 4 BB
if data_exists:
pass
else:
data_exists, X_test = get_data('Bounding Box Related X and Y data', 'tra_test_obs_data.pkl', data_path) # M_X_test_box 14, 4, BB Option
data_exists, Y_test = get_data('', 'tra_test_target_data.pkl', data_path) # M_Y_test_box 45, 4, BB Option
data_exists, X_text_box = get_data('', 'bbox_centers_test_data.pkl', data_path) # M_X_test_Bbox_center 14, 4, BB Option
data_exists, Y_text_box = get_data('', 'bbox_centers_target_data.pkl', data_path) # M_Y_test_Bbox_center 45, 4, BB Option
if data_exists:
test_results_B = model.predict(X_test[0], batch_size=n_batch, verbose=1)
tes_res = expand_dim(test_results_B, Y_test.shape[1])
# Performances on Bounding boxes)
print("\nPerformances on Bounding Boxes-Trajectory for", data_set.capitalize())
get_performance(Y_test, tes_res, 'LSTM Traject: B_Box', 1)
get_center_perf(Y_test, tes_res, X_text_box, Y_text_box, 'LSTM Traject: B_Box-C', 1)
else:
print("\nMissing data for bounding Box")
def train_speed(n_batch, n_epochs, call_backs, n_filters, speed_model_file, data_path):
# For Speed Prediction
print("=======================================")
print("Train and Predict on Speed-Trajectory:")
print("=======================================")
data_exists, Xtrain_Spe = get_data('Xtrain_Spe, Ytrain_Spe, and Val_data_Spe', 'spe_xTrain.pkl', data_path) # Xtrain_Spe 14, 1, SP
data_exists, Ytrain_Spe = get_data('', 'spe_yTrain.pkl', data_path) # Ytrain_Spe 45, 1, SP
data_exists, Val_data_Spe = get_data('', 'spe_valData.pkl', data_path) # Val_data_Spe 14, 1, Sp
if data_exists:
model = lstm_model(Xtrain_Spe[0].shape, Ytrain_Spe.shape, n_filters, 'LSTM-Traject-Speed')
print()
model.summary()
model.fit(x=Xtrain_Spe[0],
y=shorten_dim(Ytrain_Spe),
validation_data=[Val_data_Spe[0][0], shorten_dim(Val_data_Spe[1])],
batch_size=n_batch,
epochs=n_epochs,
callbacks=call_backs,
verbose=1)
# Save trained model
model.save(speed_model_file)
#del Xtrain_Spe, Ytrain_Spe, Val_data_Spe # clear memory
return model
else:
print("\nTraining data missing\n")
return None
def predict_speed(speed_model, n_batch, data_path, data_set):
data_exists, F_X_test_speed = get_data('Speed related X and Y data', 'speed_test_data.pkl', data_path) # F_X_test_speed 14, 1, SP
data_exists, F_Y_test_speed = get_data('', 'speed_target_data.pkl', data_path) # F_Y_test_speed 45, 1, SP
if data_exists:
test_results = speed_model.predict(F_X_test_speed[0], batch_size=n_batch, verbose=1)
tes_res = expand_dim(test_results, F_Y_test_speed.shape[1])
# Performances on Speed
print("\nPerformances on Speed-Trajectory for", data_set.capitalize())
get_performance(F_Y_test_speed, tes_res, 'LSTM Traject: Speed', 0)
else:
print("Data missing for Prediction")
def main(data_set="pie"):
n_batch, n_epochs, n_filters = get_sett()
call_backs = get_callback()
expected_mix = ['pie', 'waymo', 'pie-waymo']
if data_set not in expected_mix:
data_set = "pie"
print("\nWarning: unknown dataset supplied, pie is now allocated for now\n")
lstm_path = str(pathlib.Path().absolute()) + '/data/for_lstm/'
data_path = lstm_path + data_set + '/'
traject_model_path = data_path + 'traject/'
speed_model_path = data_path + 'speed/'
start = time.time()
check_path(lstm_path)
check_path(data_path)
check_path(traject_model_path)
check_path(speed_model_path)
train_speed_new = False
train_box_new = False
traject_best_model_file = traject_model_path + 'best.lstm_traject.h5'
traject_model_file = traject_model_path + 'lstm_traject.h5'
speed_best_model_file = speed_model_path + 'best.lstm_speed.h5'
speed_model_file = speed_model_path + 'lstm_speed.h5'
tra_exists = isfile(traject_best_model_file)
spe_exists = isfile(speed_best_model_file)
if tra_exists or spe_exists:
print("Do you want to load a trained model ?")
choice = 'a'
while choice not in {'Y', 'N', 'y', 'n'}:
print("Choose from (y/n) and press Enter", end=': ')
choice = input()
if choice in {'Y', 'y'}:
if tra_exists:
box_model = load_model(traject_best_model_file)
else:
train_box_new = True
if spe_exists:
speed_model = load_model(speed_best_model_file)
else:
train_speed_new = True
else:
train_speed_new = True
train_box_new = True
else:
train_speed_new = True
train_box_new = True
if train_box_new:
box_model = train_bbox(n_batch, n_epochs, call_backs, n_filters, traject_model_file, data_path)
if box_model is not None:
if not train_box_new:
print()
box_model.summary()
predict_bbox(box_model, n_batch, data_path, data_set)
"""
if train_speed_new:
speed_model = train_speed(n_batch, n_epochs, call_backs, n_filters, speed_model_file, data_path)
if speed_model is not None:
if not train_speed_new:
print()
speed_model.summary()
predict_speed(speed_model, n_batch, data_path, data_set)
"""
end = time.time()
elapsed = end - start
t_del = timedelta(seconds=elapsed)
print('\nElapsed time = {}'.format(t_del))
if __name__ == '__main__':
err_msg = 'Usage: python LSTM_trajectory.py <dataset_name>\n'
err_msg = err_msg + ' dataset_name: pie, waymo, or pie-waymo - in small case letters\n'
try:
raw_input = sys.argv
if len(raw_input) < 2:
print("\nWarning:",err_msg)
dataset_name='no value'
else:
dataset_name = sys.argv[1]
main(data_set=dataset_name)
except ValueError:
raise ValueError(err_msg)