-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
154 lines (134 loc) · 6.76 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import torch
import pprint
import os
import time
from data.datamgr import SetDataManager
from methods.FeatWalk import FeatWalk_Net
from utils.utils import set_seed,load_model
DATA_DIR = 'data'
torch.set_num_threads(4)
_utils_pp = pprint.PrettyPrinter()
def pprint(x):
_utils_pp.pprint(x)
def parse_option():
parser = argparse.ArgumentParser('arguments for model pre-train')
# about dataset and network
parser.add_argument('--dataset', type=str, default='miniimagenet',
choices=['miniimagenet', 'cub', 'tieredimagenet', 'fc100'])
parser.add_argument('--data_root', type=str, default=DATA_DIR)
parser.add_argument('--model', default='resnet12',choices=['resnet12', 'resnet18', 'resnet34', 'conv64'])
parser.add_argument('--img_size', default=84, type=int, choices=[84,224])
# about model :
parser.add_argument('--drop_gama', default=0.5, type= float)
parser.add_argument("--beta", default=0.01, type=float)
parser.add_argument('--drop_rate', default=0.5, type=float)
parser.add_argument('--reduce_dim', default=128, type=int)
# about meta test
parser.add_argument('--val_freq',default=5,type=int)
parser.add_argument('--set', type=str, default='test', choices=['val', 'test'], help='the set for validation')
parser.add_argument('--n_way', type=int, default=5)
parser.add_argument('--n_shot', type=int, default=1)
parser.add_argument('--n_aug_support_samples',type=int, default=1)
parser.add_argument('--n_queries', type=int, default=15)
parser.add_argument('--n_episodes', type=int, default=1000)
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--test_batch_size',default=1)
parser.add_argument('--grid',default=None)
# setting
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--save_dir', default='checkpoint')
parser.add_argument('--test_LR', default=False, action='store_true')
parser.add_argument('--model_type',default='best',choices=['best','last'])
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--no_save_model', default=False, action='store_true')
parser.add_argument('--method',default='local_proto',choices=['local_proto','good_metric','stl_deepbdc','confusion','WinSA'])
parser.add_argument('--distill_model', default=None,type=str,help='about distillation model path')
parser.add_argument('--penalty_c', default=1.0, type=float)
parser.add_argument('--test_times', default=1, type=int)
# confusion representation:
parser.add_argument('--n_symmetry_aug', default=1, type=int)
parser.add_argument('--embeding_way', default='BDC', choices=['BDC','GE','protonet','baseline++'])
parser.add_argument('--wd_test', type=float, default=0.01)
parser.add_argument('--LR', default=False,action='store_true')
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--optim', default='Adam',choices=['Adam', 'SGD'])
parser.add_argument('--drop_few',default=0.5,type=float)
parser.add_argument('--fix_seed', default=False, action='store_true')
parser.add_argument('--local_scale', default=0.2 , type=float)
parser.add_argument('--distill', default=False, action='store_true')
parser.add_argument('--sfc_bs', default=16, type=int)
parser.add_argument('--alpha', default=0.5 , type=float)
parser.add_argument('--sim_temperature', default=64 , type=float)
parser.add_argument('--measure', default='cosine', choices=['cosine','eudist'])
args = parser.parse_args()
args.n_symmetry_aug = args.n_aug_support_samples
return args
def model_load(args,model):
# method = 'deep_emd' if args.deep_emd else 'local_match'
method = args.method
save_path = os.path.join(args.save_dir, args.dataset + "_" + method + "_resnet12_"+args.model_type
+ ("_"+str(args.model_id) if args.model_id else "") + ".pth")
if args.distill_model is not None:
save_path = os.path.join(args.save_dir, args.distill_model)
else:
assert "model load failed! "
print('teacher model path: ' + save_path)
state_dict = torch.load(save_path)['model']
model.load_state_dict(state_dict)
return model
def main():
args = parse_option()
if args.img_size == 224 and args.transform == 'B':
args.transform = 'B224'
if args.grid:
args.n_aug_support_samples = 1
for i in args.grid:
args.n_aug_support_samples += i ** 2
args.n_symmetry_aug = args.n_aug_support_samples
pprint(args)
if args.gpu:
gpu_device = str(args.gpu)
else:
gpu_device = "0"
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_device
if args.fix_seed:
set_seed(args.seed)
json_file_read = False
if args.dataset == 'cub':
novel_file = 'novel.json'
json_file_read = True
else:
novel_file = 'test'
if args.dataset == 'miniimagenet':
novel_few_shot_params = dict(n_way=args.n_way, n_support=args.n_shot)
novel_datamgr = SetDataManager('filelist/miniImageNet', args.img_size, n_query=args.n_queries,
n_episode=args.n_episodes, json_read=json_file_read,aug_num=args.n_aug_support_samples,args=args,
**novel_few_shot_params)
novel_loader = novel_datamgr.get_data_loader(novel_file, aug=False)
num_classes = 64
elif args.dataset == 'cub':
novel_few_shot_params = dict(n_way=args.n_way, n_support=args.n_shot)
novel_datamgr = SetDataManager('filelist/CUB',args.img_size, n_query=args.n_queries,
n_episode=args.n_episodes, json_read=json_file_read,aug_num=args.n_aug_support_samples,args=args,
**novel_few_shot_params)
novel_loader = novel_datamgr.get_data_loader(novel_file, aug=False)
num_classes = 100
model = FeatWalk_Net(args,num_classes=num_classes).cuda()
model.eval()
model = load_model(model,os.path.join(args.save_dir,args.distill_model))
print("-"*20+" start meta test... "+"-"*20)
acc_sum = 0
confidence_sum = 0
for t in range(args.test_times):
with torch.no_grad():
tic = time.time()
mean, confidence = model.meta_test_loop(novel_loader)
acc_sum += mean
confidence_sum += confidence
print()
print("Time {} :meta_val acc: {:.2f} +- {:.2f} elapse: {:.2f} min".format(t,mean * 100, confidence * 100,
(time.time() - tic) / 60))
print("{} times \t acc: {:.2f} +- {:.2f}".format(args.test_times, acc_sum/args.test_times * 100, confidence_sum/args.test_times * 100, ))
if __name__ == '__main__':
main()