|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "id": "ef3ea784-8148-4b92-98ae-bd4a41422cba", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import sys\n", |
| 11 | + "import os\n", |
| 12 | + "\n", |
| 13 | + "# Adiciona o diretório pai ao caminho de pesquisa de módulos\n", |
| 14 | + "sys.path.append(os.path.abspath(os.path.join('..')))" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 3, |
| 20 | + "id": "59152fa1-060b-407c-b960-681046bd7a60", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "from torchvision.models import vgg19\n", |
| 25 | + "from continuous_lora.models.lora_vgg19 import LoraVGG19" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": 15, |
| 31 | + "id": "277ba4d8-bd72-4abc-9e50-e81fb7693aa7", |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "base_model = vgg19()\n", |
| 36 | + "model = LoraVGG19(\n", |
| 37 | + " model=base_model,\n", |
| 38 | + " masks=[[0,1,2,3,4], [5,6,7,8,9]],\n", |
| 39 | + " adapt_last_n_conv=2,\n", |
| 40 | + " adapt_last_n_linear=1,\n", |
| 41 | + ")" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 16, |
| 47 | + "id": "6799c67f-fe0d-471d-91e6-17571aba243c", |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [ |
| 50 | + { |
| 51 | + "data": { |
| 52 | + "text/plain": [ |
| 53 | + "LoraVGG19(\n", |
| 54 | + " (features): Sequential(\n", |
| 55 | + " (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 56 | + " (1): ReLU(inplace=True)\n", |
| 57 | + " (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 58 | + " (3): ReLU(inplace=True)\n", |
| 59 | + " (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
| 60 | + " (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 61 | + " (6): ReLU(inplace=True)\n", |
| 62 | + " (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 63 | + " (8): ReLU(inplace=True)\n", |
| 64 | + " (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
| 65 | + " (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 66 | + " (11): ReLU(inplace=True)\n", |
| 67 | + " (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 68 | + " (13): ReLU(inplace=True)\n", |
| 69 | + " (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 70 | + " (15): ReLU(inplace=True)\n", |
| 71 | + " (16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 72 | + " (17): ReLU(inplace=True)\n", |
| 73 | + " (18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
| 74 | + " (19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 75 | + " (20): ReLU(inplace=True)\n", |
| 76 | + " (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 77 | + " (22): ReLU(inplace=True)\n", |
| 78 | + " (23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 79 | + " (24): ReLU(inplace=True)\n", |
| 80 | + " (25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 81 | + " (26): ReLU(inplace=True)\n", |
| 82 | + " (27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
| 83 | + " (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 84 | + " (29): ReLU(inplace=True)\n", |
| 85 | + " (30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 86 | + " (31): ReLU(inplace=True)\n", |
| 87 | + " (32): ContinuousConvLoRALayer(\n", |
| 88 | + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 89 | + " )\n", |
| 90 | + " (33): ReLU(inplace=True)\n", |
| 91 | + " (34): ContinuousConvLoRALayer(\n", |
| 92 | + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", |
| 93 | + " )\n", |
| 94 | + " (35): ReLU(inplace=True)\n", |
| 95 | + " (36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
| 96 | + " )\n", |
| 97 | + " (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))\n", |
| 98 | + " (classifier): Sequential(\n", |
| 99 | + " (0): Linear(in_features=25088, out_features=4096, bias=True)\n", |
| 100 | + " (1): ReLU(inplace=True)\n", |
| 101 | + " (2): Dropout(p=0.5, inplace=False)\n", |
| 102 | + " (3): Linear(in_features=4096, out_features=4096, bias=True)\n", |
| 103 | + " (4): ReLU(inplace=True)\n", |
| 104 | + " (5): Dropout(p=0.5, inplace=False)\n", |
| 105 | + " (6): ContinuousLinearLoRALayer(in_features=4096, out_features=1000, bias=True)\n", |
| 106 | + " )\n", |
| 107 | + " (softmax): Softmax(dim=-1)\n", |
| 108 | + ")" |
| 109 | + ] |
| 110 | + }, |
| 111 | + "execution_count": 16, |
| 112 | + "metadata": {}, |
| 113 | + "output_type": "execute_result" |
| 114 | + } |
| 115 | + ], |
| 116 | + "source": [ |
| 117 | + "model" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "id": "b59e6b06-a339-43a8-a2b5-900c17c884a3", |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [], |
| 126 | + "source": [] |
| 127 | + } |
| 128 | + ], |
| 129 | + "metadata": { |
| 130 | + "kernelspec": { |
| 131 | + "display_name": "Python 3 (ipykernel)", |
| 132 | + "language": "python", |
| 133 | + "name": "python3" |
| 134 | + }, |
| 135 | + "language_info": { |
| 136 | + "codemirror_mode": { |
| 137 | + "name": "ipython", |
| 138 | + "version": 3 |
| 139 | + }, |
| 140 | + "file_extension": ".py", |
| 141 | + "mimetype": "text/x-python", |
| 142 | + "name": "python", |
| 143 | + "nbconvert_exporter": "python", |
| 144 | + "pygments_lexer": "ipython3", |
| 145 | + "version": "3.12.1" |
| 146 | + } |
| 147 | + }, |
| 148 | + "nbformat": 4, |
| 149 | + "nbformat_minor": 5 |
| 150 | +} |
0 commit comments