forked from behzadhaki/GrooveTransformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE.py
336 lines (256 loc) · 12.1 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch
import torch.nn as nn
import numpy as np
import wandb
from torch.utils.data import Dataset, DataLoader
from data import load_gmd_hvo_sequences
from logging import getLogger, DEBUG
import yaml
import argparse
logger = getLogger("VAE.py")
logger.setLevel(DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument("--wandb", help="log to wandb", default=True)
# wandb parameters
parser.add_argument(
"--config",
help="Yaml file for configuration. If available, the rest of the arguments will be ignored",
default=None,
)
parser.add_argument("--wandb_project", help="WANDB Project Name", default="VAE-Practice")
parser.add_argument("--epochs", help="Number of epochs", default=10)
parser.add_argument("--batch_size", help="Batch size", default=64)
parser.add_argument("--lr", help="Learning rate", default=1e-3)
parser.add_argument("--input_dim", help="Input dim", default=96)
parser.add_argument("--encoder_first_dim", help="Encoder first dim", default=64)
parser.add_argument("--latent_dim", help="Latent dim", default=16)
parser.add_argument("--decoder_output_dim", help="Decoder output dim", default=64)
parser.add_argument("--output_dim", help="Output dim", default=288)
# --------------------------------------------------------------------
# Dummy arguments for running the script in pycharm's python console
# --------------------------------------------------------------------
parser.add_argument("--mode", help="IGNORE THIS PARAM", default="client")
parser.add_argument("--port", help="IGNORE THIS PARAM", default="config.yaml")
# --------------------------------------------------------------------
args, unknown = parser.parse_known_args()
if unknown:
logger.warning(f"Unknown arguments: {unknown}")
if args.config is not None:
with open(args.config, "r") as f:
hparams = yaml.safe_load(f)
else:
hparams = dict(
epochs=args.epochs,
batch_size=args.batch_size,
lr=args.lr,
input_dim=args.input_dim,
encoder_first_dim=args.encoder_first_dim,
latent_dim=args.latent_dim,
decoder_output_dim=args.decoder_output_dim,
output_dim=args.output_dim
)
# config files without wandb_project specified
if args.wandb_project is not None:
hparams["wandb_project"] = args.wandb_project
assert "wandb_project" in hparams.keys(), "wandb_project not specified"
# create our data class that implements init, len, getitem
class MonotonicGrooveDataset(Dataset):
def __init__(self, dataset_setting_json_path, subset_tag, max_len, tapped_voice_idx=2,
load_as_tensor=True, collapse_tapped_sequence=False):
self.flat_seq = None
self.inputs = list()
self.outputs = list()
self.hvo_sequences = list()
# this sets subset equal to deserialized pickle data which is a list of HVO_Sequence class objects
subset = load_gmd_hvo_sequences(dataset_setting_json_path, subset_tag, force_regenerate=False)
for idx, hvo_seq in enumerate(subset):
if hvo_seq.hits is not None:
# Adjusts the length of the hvo sequence to the specified number of steps.
hvo_seq.adjust_length(max_len)
if np.any(hvo_seq.hits):
self.hvo_sequences.append(hvo_seq)
flat_seq = hvo_seq.flatten_voices(voice_idx=tapped_voice_idx, reduce_dim=collapse_tapped_sequence)
self.flat_seq = flat_seq
self.inputs.append(flat_seq)
self.outputs.append(hvo_seq.hvo)
if load_as_tensor:
self.inputs = torch.tensor(np.array(self.inputs), dtype=torch.float32)
self.outputs = torch.tensor(np.array(self.outputs), dtype=torch.float32)
def __len__(self):
return len(self.hvo_sequences)
def __getitem__(self, idx):
return self.inputs[idx], self.outputs[idx], idx
class LatentLayer(nn.Module):
def __init__(self, latent_dim):
super(LatentLayer, self).__init__()
self.linear_mu = torch.nn.Linear(latent_dim, latent_dim)
self.linear_var = torch.nn.Linear(latent_dim, latent_dim)
self.k_l = 0
def forward(self, encoded_data):
# Split the result into mu and var components
# of the latent Gaussian distribution
mu = self.linear_mu(encoded_data)
log_var = self.linear_var(encoded_data)
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
z = eps * std + mu
self.k_l = 0.5 * torch.sum(mu ** 2 + log_var ** 2 - torch.log(1e-8 + log_var ** 2) - 1) / np.prod(encoded_data.shape)
return mu, log_var, z
class Encoder(nn.Module):
def __init__(self, input_dim, encoder_first_dim, latent_dim):
super().__init__()
assert np.log2(encoder_first_dim).is_integer(), "First dim should be power of 2"
assert np.log2(latent_dim).is_integer(), "latent dim should be power of 2"
n_layers = int(np.log2(max(encoder_first_dim, latent_dim) / min(encoder_first_dim, latent_dim)))
scale_dim_by = 2 if latent_dim > encoder_first_dim else 0.5
self.flatten = nn.Flatten()
self.layers = []
_activate_last_layer = False
self.layers.append(nn.Linear(input_dim, encoder_first_dim))
self.layers.append(nn.ReLU())
# encoder
for i in range(n_layers):
self.layers.append(nn.Linear(encoder_first_dim, int(encoder_first_dim * scale_dim_by)))
if i < (n_layers - 1) or _activate_last_layer:
self.layers.append(nn.ReLU())
encoder_first_dim = int(encoder_first_dim * scale_dim_by)
print(self.layers)
def forward(self, input_data):
flattened_data = self.flatten(input_data)
for i, layer in enumerate (self.layers):
if i == 0:
x = layer(flattened_data)
else:
x = layer(x)
return x
class Decoder(nn.Module):
def __init__(self, latent_dim, decoder_output_dim):
super().__init__()
assert np.log2(decoder_output_dim).is_integer(), "Output dim should be power of 2"
assert np.log2(latent_dim).is_integer(), "Latent dim should be power of 2"
n_layers = int(np.log2(max(latent_dim, decoder_output_dim) / min(latent_dim, decoder_output_dim)))
scale_dim_by = 2 if decoder_output_dim > latent_dim else 0.5
self.layers = []
# decoder
for i in range(n_layers):
self.layers.append(nn.Linear(latent_dim, int(latent_dim * scale_dim_by)))
latent_dim = int(latent_dim * scale_dim_by)
print(self.layers)
def forward(self, encoded_data):
for i, layer in enumerate(self.layers):
if i == 0:
x = layer(encoded_data)
else:
x = layer(x)
return x
class OutputLayer(nn.Module):
def __init__(self, decoder_output_dim, output_dim):
super().__init__()
# final output
self.linear_h = nn.Linear(decoder_output_dim, output_dim)
self.linear_v = nn.Linear(decoder_output_dim, output_dim)
self.linear_o = nn.Linear(decoder_output_dim, output_dim)
def forward(self, decoded_data):
h = self.linear_h(decoded_data)
v = self.linear_v(decoded_data)
o = self.linear_o(decoded_data)
return h, v, o
# define our nn model
class VariationalAutoEncoder(nn.Module):
def __init__(self, config):
super().__init__()
# Layers
# ---------------------------------------------------
self.Encoder = Encoder(config.input_dim, config.encoder_first_dim, config.latent_dim)
self.LatentLayer = LatentLayer(config.latent_dim)
self.Decoder = Decoder(config.latent_dim, config.decoder_output_dim)
self.OutputLayer = OutputLayer(config.decoder_output_dim, config.output_dim)
def forward(self, input_data):
encoded_data = self.Encoder(input_data)
mu, log_var, z = self.LatentLayer(encoded_data)
decoded_data = self.Decoder(z)
h, v, o = self.OutputLayer(decoded_data)
return h, v, o
# For a "predict" or inference model, sigmoid needs to be applied manually
def train_one_epoch(model, data_loader, loss_fn, optimiser, device):
# make list of h v o loss and k/l and total and parse in dict
# dict of {"train/h_loss": [], ...}
# calculate mean for each loss list and return dict to caller
loss_dict = {"train/h_loss": [],
"train/v_loss": [],
"train/o_loss": [],
"train/k_l": [],
"train/total_loss": []}
for inputs, targets, idx in data_loader:
inputs, targets = inputs.to(device), targets.to(device)
h_targets = targets[:, :, :9]
v_targets = targets[:, :, 9:18]
o_targets = targets[:, :, 18:]
# calculate loss
h_predictions, v_predictions, o_predictions = model(inputs)
h_predictions = h_predictions.view(h_predictions.shape[0], 32, 9)
v_predictions = v_predictions.view(h_predictions.shape[0], 32, 9)
o_predictions = o_predictions.view(h_predictions.shape[0], 32, 9)
h_loss = loss_fn(h_predictions, h_targets)
v_loss = loss_fn(v_predictions, v_targets)
o_loss = loss_fn(o_predictions, o_targets + 0.5)
k_l = auto_encoder.LatentLayer.k_l
total_loss = h_loss + v_loss + o_loss + k_l
loss_dict["train/h_loss"].append(h_loss)
loss_dict["train/v_loss"].append(v_loss)
loss_dict["train/o_loss"].append(o_loss)
loss_dict["train/k_l"].append(k_l)
loss_dict["train/total_loss"].append(total_loss)
# # # backpropagation loss and update weights
optimiser.zero_grad()
total_loss.backward()
optimiser.step()
loss_dict["train/h_loss"] = average(loss_dict["train/h_loss"])
loss_dict["train/v_loss"] = average(loss_dict["train/v_loss"])
loss_dict["train/o_loss"] = average(loss_dict["train/o_loss"])
loss_dict["train/k_l"] = average(loss_dict["train/k_l"])
loss_dict["train/total_loss"] = average(loss_dict["train/total_loss"])
return loss_dict
def train(model, data_loader, loss_fn, optimiser, device, epochs):
for i in range(epochs):
print(f"Epoch {i+1}")
loss_dict = train_one_epoch(model, data_loader, loss_fn, optimiser, device)
wandb.log({"epoch": i}, commit=False)
wandb.log(loss_dict, commit=True)
print("-------------------")
print("training done")
def average(lst):
return sum(lst) / len(lst)
if __name__ == "__main__":
# Initialize wandb
# ----------------------------------------------------------------------------------------------------------
wandb_run = wandb.init(
config=hparams, # either from config file or CLI specified hyperparameters
project=hparams["wandb_project"], # name of the project
anonymous="allow",
settings=wandb.Settings(code_dir="VAE.py") # for code saving
)
# Reset config to wandb.config (in case of sweeping with YAML necessary)
# ----------------------------------------------------------------------------------------------------------
config = wandb.config
run_name = wandb_run.name
run_id = wandb_run.id
# Load Training and Testing Datasets and Wrap them in torch.utils.data.Dataloader
# ----------------------------------------------------------------------------------------------------------
training_data = MonotonicGrooveDataset(
dataset_setting_json_path="data/dataset_json_settings/4_4_Beats_gmd.json",
subset_tag="train",
max_len=32,
tapped_voice_idx=2,
load_as_tensor=True,
collapse_tapped_sequence=True)
# initialize the data loader with our training data
train_data_loader = DataLoader(training_data, batch_size=config.batch_size, shuffle=True)
# initialize model
auto_encoder = VariationalAutoEncoder(config).to("cpu")
# instantiate loss fn and optimiser
bce_with_logits_loss_fn = nn.BCEWithLogitsLoss()
adam_optimiser = torch.optim.Adam(auto_encoder.parameters(), lr=config.lr)
# train model
train(auto_encoder, train_data_loader, bce_with_logits_loss_fn, adam_optimiser, "cpu", config.epochs)
wandb.finish()