
Generating Stack Machine Code using LLVM

Alan Li
ETC Core

alan.l@etclabs.org, alan.li@me.com

Abstract
This unfinished draft article1 discusses about the
design and implementation of a stack machine
codegen in LLVM. LLVM is designed to support
code generation for register machines, and this hin-
ders the wide use of LLVM for stack machines.
This article shows that it is possible to target LLVM
to stack machine platforms with minimal trade-
offs. Such framework could possibly be adapted
to various of other stack machine architectures.
This work is funded by ETC Core, the leading
Ethereum Classic core development team.

1 Introduction
The Stack Machine Model
Recently, stack machine models are becoming a popular
choice for virtual architectures. New virtual ISAs such as We-
bAssembly, Ethereum VM, and the Telegram VM on TON
blockchain all choose stack machine ISAs. The stack ma-
chine model is considered a good choice of ISA design in
situations where code size and code density is an important
factor of performance, such as smart contracts on blockchain,
or in-browser applications. Texts discussed the benefits and
drawbacks of stack machines include: [Koopman, 1989], [Shi
et al., 2008], etc.

Stak Machine Compilers
However, there is no such a general stack machine compiler
infrastructure specifically designed for stack machine code
generation. Stack machine compiler developers have to either
build their own compiler framework or re-purpose existing
SSA-based compiler framework to do the job.

A majority of the traditional compiler techniques can be
directly applied to build a stack machine compiler, especially
in the case of a retargetable compiler infrastructure such as
LLVM, where most of its modules are designed to be inde-
pendent and reused.

Having a dedicated stack machine compiler for a specific
stack machine could be beneficial in some aspects when do-
ing codegen, but people generally think it is better to build the

1Last edited and compiled on Wednesday 5th February, 2020.

stack machine target upon already matured compiler frame-
works so we can take advantage of existing compiler analysis
framework and optimizations.

The author presents his approach to build a stack machine
target (to be more specific, the EthereumVM architecture) in
the LLVM framework [Lattner and Adve, 2004] to generate
stack machine code in this article.

The EthereumVM Architecture
The EthereumVM [Wood and others, 2014] is a simplis-
tic, Turing-complete virtual machine designed for executing
smart contracts on decentralized platforms. By now, EVM is
being adopted and used in projects other than the Ethereum
blockchain, making it the most popular smart contract engine
so far.

EVM is designed to be a 256-bit, deterministic, syn-
chronous, safety-oriented stack virtual machine. The archi-
tecture uses no registers, including special registers such as
frame pointers. To make things easier, EVM does have a
memory space for storing temporary values, along with a stor-
age space which serves as a database so developers can store
persistent contract information.

One thing distinguish EVM from other execution engine
is that each EVM instruction is fueled with limited supplied
”gas”. The gas is essentially the underlying currency of the
blockchain, called Ether. By carefully allocate gas consump-
tion schedule, the blockchain intricately controls computing
resource allocation of each of the smart contract executions.
The ”out of gas” exception forces contract to halt should
something out of control happens.

The major optimization goal for EVM target is to reduce
the cost of executing a smart contract, along with deployable
reduced smart contract size.

Rationales behind EVM Compiler Backend
Currently, EVM developers are limited to only a few lan-
guages, each has its own compiler [Dannen, 2017]. Still, peo-
ple are trying to develop new smart contract languages, and
the lack of a general purpose EVM backend makes it difficult
to build competitive ones.

The ideas from this article originated from implementing
the EVM target in LLVM2. The main purpose of building an
EVM target on LLVM is not only to benefit the developers

2The code is hosted at https://github.com/etclabscore/evm llvm

https://etccore.io/
https://github.com/etclabscore/evm_llvm

by expanding the EVM ecosystem, but also to have long term
compiler support of the EVM target.

2 Code Generation
2.1 Codegen Pipeline

Figure 1: Illustration of pipeline

Figure.1 shows the flowchart showing the codegen work-
flow for a stack machine. The pipeline used to generate stack
machine code is different than that of a register machine code-
gen pipeline. The followings are discussions on the design of
the pipeline:

No register allocation. General purpose physical regis-
ters are non-existent in stack machines, there is no point
to allocate physical registers for a stack machine. All the
registerrelated operations will be performed on virtual reg-
ister format. The physical resource allocation process is
instead done in the stack allocation pass.
Two sets of machine opcodes are defined. For each stack
machine instruction, we define a register-based flavor and
a stackbased flavor in the backend. Figure.2 is a side-by-
side comparison of the two formats, where register-based
instructions are suffixed with r to distinguish themselves
from stack-based ones. There is also a mapping function
defined to retrieve a stack instruction given by its register
counterpart. The register instructions are defined in simple
RISC format, where all instructions take register operands
except the PUSH r, which is specifically used for instanti-
ating a register with constant value.
Such idea originated from the WebAssembly LLVM back-
end [Haas et al., 2017]. The EVM backend reuses this
technique because of its engineering simplicity.
Codegen Passes are split into two categories. The Stack-
ification pass is used to convert register-based instructions
into stack-based flavor. Passes after it will operate on stack
instructions.

%0 = PUSH r 0x40 PUSH 0x40
%1 = LOAD r %1 LOAD
%2 = PUSH r 0x20 PUSH 0x20
%3 = ADD r %1, %2 ADD
%4 = PUSH r 0x40 PUSH 0x40
STORE r %4, %3 STORE

Figure 2: Instructions in register and stack representations

Stack Allocation
The stack allocation pass tries to allocate a virtual register on
stack space or spill them onto memory space if the situation
is not permitted. The goal of stack allocation is to reduce
overall memory spillings.

[Shannon and Bailey, 2006] described a global stack al-
location method which works in place of global register al-
location. The method divides the stack into several spaces,
including local regions and cross-BB regions. The algorithm
will assign a region to each of the variables.

This pass is irrelevant to our local (intra-basicblock) in-
struction scheduler. A local scheduler only alters an instruc-
tion’s position within a basicblock, hence can not alter a vari-
able’s position within an assigned region. Such property en-
ables us to simplify stack machine codegen.

The Stackification Pass
The tasks of stackification pass is to map instructions to stack
instructions, then inserts stack manipulation instructions so
the stack operands are correctly retrieved. It respects the or-
ders of input instructions and block layout, and only inserts
stack manipulation instructions when it sees fit. Notice that
to correctly arrange stack manipulation instructions, the pass
needs to know stack allocation information. If an operand
was assigned to a spilled memory location, the pass have to
insert instructions to bring it back to stack.

To make the engineering effort manageable, the pass is de-
signed to be agnostic of previous optimizations, such as in-
struction scheduling. It does not change or remove the order
of original instructions.

Figure.3 shows a case where we have to insert an additional
SWAP instruction to make sure the order of operands are cor-
rect on top of stack. In reality, the inserted SWAP instruction
can be eliminated by instruction scheduling.

3 Global stack allocation
Ethereum VM’s memory access is expensive in that to access
a memory element, more than a few instructions are needed to
retrieve the value from memory. In this case, putting variables
on stack instead of memory is profitable.

3.1 Stack Regions
We divide the stack space into two major regions for alloca-
tion. The local stack region (L region) stores variables that
are local to a basic block, and the transfer stack region (X re-
gion). We also utilize memory space for cases that cannot be

%0 = PUSH r 0x00 PUSH 0x00
%1 = LOAD r %0 LOAD
%2 = PUSH r 0x20 PUSH 0x20
%3 = LOAD r %2 LOAD
%4 = SUB r %1, %2 SWAP
%5 = PUSH r 0x40 SUB
STORE r %5, %4 PUSH 0x40

STORE

Figure 3: Example: SWAP is inserted to ensure correctness of
operand order on stack

allocated on stack. Figure 4 shows how the local and trans-
fer regions are arranged in the stack space, where the stack
grows upwards. Note that function’s formal arguments are
instantiated using a pseudo instruction at the beginning of the
function, so there are no cross function boundary dependen-
cies for variables.

The analysis pass will assign to each of the variables with
one of the following four allocation decisions.

• Allocate on L region. For a variable with a live range
of a single basic block, assign it to L region. Notice that
at the beginning and at the end of a basic block, the L
region is empty.

• Allocate on X region. Some variables with cross ba-
sic block access patterns can be assigned to the transfer
stack region so as to avoid memory accesses. The X re-
gion carries cross block dependent information. We will
discuss the details in Section 3.2.

• Allocate on memory. Variables with complicated ac-
cess patterns will be assigned to a memory slot. This is
the fallback option. Our goal is to minimize it as much
as possible.

• No allocation. If a variable does not have any use after
define, do not allocate stack slot for it. In the stackifi-
cation pass, we will insert a POP instruction immediate
after its define to pop it out of the stack.

Figure 4: Illustration of stack region arrangement

3.2 SSA-based Algorithm
It is fairly easy to distinguish L-region-assigned variables, so
we will focus on other cases. [Shannon and Bailey, 2006]
recognizes that when flow control changes, the program have
to make sure the shape of the stack must be in a fixed and
known state to successors. When multiple predecessors or
successors exist, predecessors must have exact the same stack
at the time of branching.

Shannon’s original dissertation describes the algorithm us-
ing edge-sets to determine the group of control flow branches
that should have the same stack shape. Basic blocks in a
same edge-set have to ensure its entry or exit stack statuses
are identical to each other. For example, the scenario of %X
shown in the left side of Case 1 in Figure 5 is a no for X re-
gion allocation. The reason is that the lower left basic block
does not have uses of %X — resulting in imbalanced stack if
the program takes the left path.

3.3 Optimizing Stack Allocation
A prepossessing pass consists of program transformations is
used to improve the performance of stack allocation. The pass
is designed to be fully decoupled with stack allocation, and
they both are agnostic of each other. The transformations in
the pass enables more X region allocations rather than mem-
ory allocations. The ideas behind this optimization can be
described by the following bullet points:

• Splitting register live ranges. Register coalescing tries
to combine variables to eliminate copy instructions. The
idea works for register machines but does not work on
stack machines, as stack operands are ephemeral. On a
stack machine, the process of coalescing lengthens reg-
ister liveness range, potentially invalidates stack alloca-
tion opportunities. The Case 2 shown in Figure 5 is a
conversion to split a register range so both %x and %y
can be allocated on X region.

• Fill in empty blocks in a same edge-set, so that all the ba-
sic blocks in a same edge-set produce or consume same
stack elements. This idea is shown in the example of
Case 1 in Figure 5.

Case 3 in Figure 5 is a comprehension example showing
how to stack allocate %x.

4 Codegen Optimizations
This section describes codegen optimizations that could be
applied to a stack machine backend. 3

4.1 Instruction Scheduling
Instructions such as DUP, SWAP, DROP, that do not con-
tribute directly to the computation but are necessary to ensure
operand order are stack manipulation instructions. Instruc-
tion scheduler on stack machine is used to remove as much
stack manipulation instructions as possible. Many literature,

3As of year end 2019, the EVM target has not yet implemented
all of the optimizations. Those unimplemented optimizations will
be our future works. Experimental results will be later reflected in
Section 7.

Figure 5: Examples of optimization cases

[Maierhofer and Ertl, 1998], [Koopman, 1992] suggests local
instruction scheduling algorithms produce excellent results.
In our compiler framework, we choose to use local scheduler.
The scheduler is orthogonal to other optimizations, and works
only on variables allocated on L region.

4.2 Peephole optimizations
Some preliminary general optimization ideas for stack ma-
chine code generation are described in [Koopman, 1992] and
[Knaggs, 1993].

Architecture-specific peephole optimizations are an impor-
tant part and is executed at the end of the pipeline. For ex-
ample, in EVM backend the constant materialization instruc-
tion PUSH have 32 flavors indicating the constant length. A
PUSH32 0x01 instruction will take up 33 bytes of space, so
it is profitable to convert it to PUSH1 0x01 to improve code
density. Similarly, materializing a small negative value can
be implemented as a PUSH and along with a SIGNEXTEND
to do sign extension.

5 The Plan for EVM Backend 4

The EVM backend is still undergoing development. Here is a
short summary of its engineering efforts:

Basic codegen completed, most optimizations unfinished.
Including:

– Instruction scheduler
– Pre-stackifying optimizations
– Global stack allocation

4This section is completely sidenote and is not related to tech-
nical discussions. The materials presented in this section are for the
purpose of completeness and information.

Local stack allocation algorithm is used to support stacki-
fication pass.
Other necessary backend plugs: such as 256-bit support;
simple EVM-specific object file emitting, including meta-
data information; EVM-specific intrinsics.

EVM LLVM project is a candidate for Ethereum Commu-
nity Fund supports. An alpha version is released in January
2020.

6 A General Purpose Stack Machine Codegen
Framework

It has come to our attention that the majority part of the code-
gen framework we implemented can be reused across dif-
ferent stack machine targets. Or at least, the methodologies
exercised can be summarized and used as guidelines for an-
other stack machine target. This section contains discussions
on building a general purpose stack codegen framework on
LLVM.

6.1 Target-generic Components
The following is a list of codegen components that can be
implemented in a target-agnostic way:

A symbolic execution engine simulates the stack status
must be used to determine the variable locations on the
stack. Such engine must be used in the stackification pass,
and can also be used in the instruction scheduler and peep-
hole optimizations pass.
A stack allocator along with an optimization pass to an-
alyze the program and efficiently allocate stack space for
variables.
A register/stack instruction defining mechanism allows
users to quickly define both register-based instructions and
stack-based instructions, along with a mapping mechanism
between both categories.
An instruction scheduler can also be implemented to be
agnostic of target information. One simple approach is to
implement a simple depth-first scheduler.
A general-purpose stack code optimizer which imple-
ments optimization ideas presented in various of texts such
as [Koopman, 1992] and [Maierhofer and Ertl, 1998] can
be useful.

6.2 Target-specific Components
Target-specific implementation inside the general framework
are done through virtual function hooks. Operations such as
load from memory or store to memory must be implemented
by target backend because it involves machine instructions.

Other than that, we collected a list of target-specific infor-
mation the backend needs to fill in:

Stack operations that tells the codegen what tools can be
used in generating optimal code for a specific scene. For
example, some target have restrictions on stack operations:
in EVM the computer can retrieve a variable on stack up
to stack depth of 16. Should a variable reside deeper in the
stack, compiler have to spill some variables to make the

desired stack variable depth less or equal than 16. On the
other hand, WebAssembly provides convenient approaches
to retrieve variables deep in the stack such as put local
and get local.
Stack frame definitions that explains the structure of a
stack frame so the framework can generate stack loads and
stores properly. Target’s calling conventions also partly at-
tribute to the stack frame definitions.

7 Performance and Evaluations
We are still undergoing corresponding evaluations and will
update this section as the development goes on.

8 Future Works
EVM is the most widely accepted smart contract engine on
blockchains. Its performance matters very much, because ev-
ery instruction is associated with a monetary cost. So it is
very tempting for developers to reduce the cost of smart con-
tract execution.

By utilizing LLVM infrastructure, the EVM LLVM back-
end gives a platform for various of opportunities of stack ma-
chine code optimizations. On the other hand, such compiler
optimizing and analysis platform can help improving EVM
ISA design in a next version iteration. The ”softwarevirtual
ISAruntime” codesign approach could further improve smart
contract performance.

References
[Dannen, 2017] Chris Dannen. Introducing Ethereum and

Solidity. Springer, 2017.
[Haas et al., 2017] Andreas Haas, Andreas Rossberg,

Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien.
Bringing the web up to speed with webassembly. In ACM
SIGPLAN Notices, volume 52, pages 185–200. ACM,
2017.

[Knaggs, 1993] Peter J Knaggs. Practical and Theoretical
Aspects of Forth Software Development. PhD thesis, Uni-
versity of Teesside, 1993.

[Koopman, 1989] Philip Koopman. Stack computers: the
new wave. figshare, 1989.

[Koopman, 1992] Philip Koopman. Preliminary exploration
of optimized stack code generation. In Rochester Forth
Conference, pages 111–111. J FORTH APPLICATION
AND RESEARCH, 1992.

[Lattner and Adve, 2004] Chris Lattner and Vikram Adve.
Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the interna-
tional symposium on Code generation and optimization:
feedback-directed and runtime optimization, page 75.
IEEE Computer Society, 2004.

[Maierhofer and Ertl, 1998] Martin Maierhofer and M An-
ton Ertl. Local stack allocation. In International Confer-
ence on Compiler Construction, pages 189–203. Springer,
1998.

[Shannon and Bailey, 2006] Mark Shannon and Chris Bai-
ley. Global stack allocation–. In 22nd EuroForth Con-
ference, page 13. Citeseer, 2006.

[Shi et al., 2008] Yunhe Shi, Kevin Casey, M Anton Ertl, and
David Gregg. Virtual machine showdown: Stack versus
registers. ACM Transactions on Architecture and Code
Optimization (TACO), 4(4):2, 2008.

[Wood and others, 2014] Gavin Wood et al. Ethereum:
A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

	Introduction
	The Stack Machine Model
	Stak Machine Compilers
	The EthereumVM Architecture
	Rationales behind EVM Compiler Backend

	Code Generation
	Codegen Pipeline
	Stack Allocation
	The Stackification Pass

	Global stack allocation
	Stack Regions
	SSA-based Algorithm
	Optimizing Stack Allocation

	Codegen Optimizations
	Instruction Scheduling
	Peephole optimizations

	The Plan for EVM Backend This section is completely sidenote and is not related to technical discussions. The materials presented in this section are for the purpose of completeness and information.
	A General Purpose Stack Machine Codegen Framework
	Target-generic Components
	Target-specific Components

	Performance and Evaluations
	Future Works

