-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_cnv_bias.py
executable file
·205 lines (167 loc) · 7.38 KB
/
plot_cnv_bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
"""Plot raw coverages vs. various confounding properties for multiple files."""
from __future__ import division, print_function
import argparse
from itertools import izip
from os.path import basename
import numpy as np
import seaborn
from matplotlib import pyplot, cm
from cnvlib import read
from cnvlib import fix, params
from cnvlib.core import shift_xx
from cnvlib.ngfrills import echo
# from cnvlib.reference import mask_bad_probes
from cnvlib.smoothing import rolling_median, smoothed
seaborn.set(font='Sans', style="ticks")
def load_cna(fname, reference):
"""Read CNA, adjust gender. Subtract reference if given (for ratio)."""
echo("Processing", fname)
cnarr = read(fname)
if reference:
# Subtract the reference copy number values (to get the log2 ratio)
cnarr = fix.load_adjust_coverages(cnarr, reference, False, False, False)
cnarr = shift_xx(cnarr, male_normal=True)
else:
cnarr = shift_xx(cnarr, male_normal=True)
# Drop low-coverage probes (otherwise done in load_adjust_coverages)
# cnarr = cnarr.to_rows(
# cnarr[cnarr.coverage >= params.MIN_BIN_COVERAGE])
return cnarr
def get_bias_func(mode, ref_pset, probes):
if not ref_pset:
raise ValueError("Must supply a reference for " + mode)
ref_matched = fix.match_ref_to_probes(ref_pset, probes)
if mode in ('gc', 'rmask'):
return ref_matched[mode]
elif mode == 'edge':
return fix.make_edge_sorter(ref_matched, params.INSERT_SIZE)
else:
raise ValueError("Unknown mode: %s" % mode)
def sort_and_smooth(probes, biases):
if callable(biases):
biases = map(biases, probes)
biases, coverages = zip(*sorted(
((bias, cvg) for bias, cvg in izip(biases, probes['coverage'])),
key=lambda bc: bc[0]))
# Smooth the biases
cvg_fitted = rolling_median(coverages, .2)
# Again! (for aesthetics)
# cvg_fitted = smoothed(cvg_fitted, .05)
# Print some stats
coverages = np.asarray(coverages)
orig_var = np.var(coverages)
def improvement(fitvals):
return 100 * (1 - (np.var(coverages - fitvals) / orig_var))
# print("Sample \tRaw probes \tTrend line \tReduction")
print(probes.sample_id,
"\t %.5f \t %.5f \t %.4f"
% (orig_var, np.var(cvg_fitted), improvement(cvg_fitted)),
'%')
return biases, coverages, cvg_fitted
def get_sort_and_smoother(cna_fname, ref_arr, mode):
"""Make a sort_and_smooth func from example CNA and reference."""
ref_matched = fix.match_ref_to_probes(ref_arr, read(cna_fname))
if mode in ('gc', 'rmask'):
biases = ref_matched[mode]
elif mode == 'edge':
biases = map(fix.make_edge_sorter(ref_matched, params.INSERT_SIZE),
ref_arr)
else:
raise ValueError("Unknown mode: %s" % mode)
def wrapped_sort_and_smooth(this_arr):
"""Sort and smooth."""
assert len(this_arr) == len(biases)
biases, coverages = zip(*sorted(
((bias, cvg) for bias, cvg in izip(biases, this_arr['coverage'])),
key=lambda bc: bc[0]))
# Smooth the biases
cvg_fitted = rolling_median(coverages, .2)
# Again! (for aesthetics)
# cvg_fitted = smoothed(cvg_fitted, .05)
# Print some stats
coverages = np.asarray(coverages)
orig_var = np.var(coverages)
def improvement(fitvals):
return 100 * (1 - (np.var(coverages - fitvals) / orig_var))
# print("Sample \tRaw probes \tTrend line \tReduction")
print(this_arr.sample_id,
"\t %.5f \t %.5f \t %.4f"
% (orig_var, np.var(cvg_fitted), improvement(cvg_fitted)))
return biases, coverages, cvg_fitted
return wrapped_sort_and_smooth
def plot_separate(filenames, ref_pset, bias_func, mode, do_ratio):
"""Plot coverages versus other factors to reveal systematic biases."""
_fig, axes = pyplot.subplots(len(filenames), squeeze=False, sharex=True,
figsize=(4, 4))
for fname, ax in zip(filenames, axes[:, 0]):
# Compute points to plot
pset = load_cna(fname, ref_pset if do_ratio else None)
bias, coverages, fitted = sort_and_smooth(pset, bias_func)
ax.plot(bias, fitted, color='#F04040', alpha=0.7, lw=2, zorder=-.1)
ax.scatter(bias, coverages, marker='.', color='#666666', zorder=-1, alpha=0.1)
# Aesthetics
if mode == 'edge':
ax.set_xlim(xmin=-1, xmax=0)
else:
ax.set_xlim(xmin=0, xmax=1)
# ax.set_ylim(ymin=min(bias) - .5, ymax=max(bias) + .5)
ax.set_ylim(ymin=-1.1, ymax=1.1)
ax.axhline(color='k', linestyle='-', zorder=-2)
ax.set_title(basename(fname))
ax.set_ylabel("Copy ratio (log2)" if do_ratio else "Copy number (log2)")
pyplot.xlabel(mode)
def plot_overlaid(filenames, ref_pset, bias_func, mode, do_ratio, colorscheme):
"""Plot coverages versus other factors to reveal systematic biases."""
_fig, ax = pyplot.subplots(figsize=(4, 4))
ax.tick_params(labelsize='large')
colors = map(getattr(cm, colorscheme), np.arange(.1, .9, .8/len(filenames)))
for fname, color in zip(filenames, colors):
# Compute points to plot
pset = load_cna(fname, ref_pset if do_ratio else None)
bias, _coverages, fitted = sort_and_smooth(pset, bias_func)
ax.plot(bias, fitted, color=color, alpha=0.7, lw=2, zorder=-.1)
# Aesthetics
if mode == 'edge':
ax.set_xlim(xmin=-1, xmax=0)
else:
ax.set_xlim(xmin=0, xmax=1)
# ax.set_ylim(ymin=-1.5, ymax=1.5)
ax.axhline(color='k', linestyle=':', zorder=-2)
ax.set_xlabel(mode)
ax.set_ylabel("Copy ratio (log2)" if do_ratio else "Copy number (log2)")
def main(args):
"""*"""
do_ratio = bool(args.reference)
ref_pset = read(args.reference or args.no_reference)
bias_func = get_bias_func(args.mode, ref_pset, read(args.filenames[0]))
print("Sample \tRaw probes \tTrend line \tReduction (%)")
if args.batch:
plot_overlaid(args.filenames, ref_pset, bias_func, args.mode, do_ratio, args.color)
else:
plot_separate(args.filenames, ref_pset, bias_func, args.mode, do_ratio)
if args.output:
pyplot.savefig(args.output, format='pdf', bbox_inches=0)
echo("Wrote", args.output)
else:
pyplot.show()
if __name__ == '__main__':
AP = argparse.ArgumentParser(
description=__doc__,
epilog="Contact Eric Talevich <[email protected]> for help.")
AP.add_argument("filenames", nargs='+',
help="Raw coverage filenames (.cnn).")
AP.add_argument('-m', "--mode",
default='gc', choices=['gc', 'edge', 'rmask'],
help="Type of bias to examine.")
AP.add_argument('-b', '--batch', action='store_true',
help="Plot only the overlaid trendlines of the arguments.")
AP.add_argument('-c', '--color', default="Reds",
help="matplotlib colormap name.")
AP.add_argument('-r', '--reference',
help="Reference coverage table (to compute CN ratios).")
AP.add_argument('-nr', '--no-reference',
help="""Reference coverage table for GC, but NOT to compute
CN ratios -- show raw copy numbers).""")
AP.add_argument("-o", "--output", help="Output PDF file name")
main(AP.parse_args())