-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_log_file.py
135 lines (105 loc) · 4.93 KB
/
parse_log_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import os
import pandas as pd
#import matplotlib.pyplot as plt
#import numpy as np
def parse_csv(validation_file, test_file, num_groups, output_file):
with open(output_file, 'w') as f:
df = pd.read_csv(validation_file)
col = df['avg_acc']
max_index = col.idxmax()
df2 = pd.read_csv(test_file)
count = 5
# try with avg_acc, avg_actual_loss, avg_per_sample_loss
previous = 0
ending_epoch = 0
for i in range(len(df['avg_acc'])):
current = (df['avg_acc'][int(i)])
if (count % 5 == 0):
if (previous > current):
ending_epoch = i
break
previous = current
count+=1
f.write('Early stopping validation accuracy: ' + str(df['avg_acc'][ending_epoch]) + '\n')
f.write('Epoch: ' + str(df['epoch'][ending_epoch]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df[header][ending_epoch]) + '\n')
f.write('\nBest validation accuracy: ' + str(df['avg_acc'][max_index]) + '\n')
f.write('Epoch: ' + str(df['epoch'][max_index]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df[header][max_index]) + '\n')
f.write('\nEarly stopping testing accuracy: ' + str(df2['avg_acc'][ending_epoch]) + '\n')
f.write('Epoch: ' + str(df2['epoch'][ending_epoch]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df2[header][ending_epoch]) + '\n')
f.write('\nTest accuracy at best validation: ' + str(df2['avg_acc'][max_index]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df2[header][max_index]) + '\n')
col = df2['avg_acc']
max_index = col.idxmax()
f.write('\nBest test accuracy: ' + str(df2['avg_acc'][max_index]) + '\n')
f.write('Epoch: ' + str(df2['epoch'][max_index]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df2[header][max_index]) + '\n')
if num_groups==4:
col = df[['avg_acc_group:0','avg_acc_group:1','avg_acc_group:2','avg_acc_group:3']].min(axis=1)
elif num_groups==6:
col = df[['avg_acc_group:0','avg_acc_group:1','avg_acc_group:2','avg_acc_group:3','avg_acc_group:4','avg_acc_group:5']].min(axis=1)
elif num_groups==16:
col = df[['avg_acc_group:0','avg_acc_group:1','avg_acc_group:2','avg_acc_group:3',
'avg_acc_group:4','avg_acc_group:5','avg_acc_group:6','avg_acc_group:7',
'avg_acc_group:8','avg_acc_group:9','avg_acc_group:10','avg_acc_group:11',
'avg_acc_group:12','avg_acc_group:13','avg_acc_group:14','avg_acc_group:15']].min(axis=1)
max_index = col.idxmax()
#max_index = col.idxmax()
f.write('\nBest worst-case group validation accuracy: ' + str(df['avg_acc'][max_index]) + '\n')
f.write('Epoch: ' + str(df['epoch'][max_index]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df[header][max_index]) + '\n')
if num_groups==4:
col = df2[['avg_acc_group:0','avg_acc_group:1','avg_acc_group:2','avg_acc_group:3']].min(axis=1)
elif num_groups==6:
col = df2[['avg_acc_group:0','avg_acc_group:1','avg_acc_group:2','avg_acc_group:3','avg_acc_group:4','avg_acc_group:5']].min(axis=1)
elif num_groups==16:
col = df2[['avg_acc_group:0','avg_acc_group:1','avg_acc_group:2','avg_acc_group:3',
'avg_acc_group:4','avg_acc_group:5','avg_acc_group:6','avg_acc_group:7',
'avg_acc_group:8','avg_acc_group:9','avg_acc_group:10','avg_acc_group:11',
'avg_acc_group:12','avg_acc_group:13','avg_acc_group:14','avg_acc_group:15']].min(axis=1)
max_index = col.idxmax()
f.write('\nBest worst-case group test accuracy: ' + str(df2['avg_acc'][max_index]) + '\n')
f.write('Epoch: ' + str(df2['epoch'][max_index]) + '\n')
f.write('Group accuracies:\n')
for i in range(0, num_groups):
header = 'avg_acc_group:' + str(i)
f.write(header + ": " + str(df2[header][max_index]) + '\n')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--log_dir', type=str, default='./log')
parser.add_argument('--num_groups', type=int, default=4)
parser.add_argument('--val', type=str, default='val.csv')
parser.add_argument('--test', type=str, default='test.csv')
args = parser.parse_args()
if args.val=='val.csv':
outf='parsed_log_file.txt'
else:
outf='parsed_log_file_r.txt'
validation_file = os.path.join(args.log_dir, args.val)
test_file = os.path.join(args.log_dir, args.test)
output_file = os.path.join(args.log_dir, outf)
parse_csv(validation_file, test_file, args.num_groups, output_file)
#parse_file(args.log_file, args.num_groups, args.output_file)
if __name__ == '__main__':
main()