-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_video_retrieval_didemo.py
174 lines (153 loc) · 6.5 KB
/
single_video_retrieval_didemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""Single video moment retrieval evaluation example
Compute metrics reported by Hendricks et. al ICCV-2017 in DiDeMo dataset. It's
only useful for DiDeMo dataset because the metrics cannot be extended to the
other annotations of existing public benchmarks (yet).
"""
import argparse
import json
import logging
from pathlib import Path
import numpy as np
import torch
from tqdm import tqdm
import dataset_untrimmed
import model
from evaluation import didemo_evaluation
from proposals import DidemoICCV17SS
from utils import setup_logging, load_args_from_snapshot, collate_data_eval
METRICS = ['miou', 'rank@1', 'rank@5']
TOPK = [1, 5]
parser = argparse.ArgumentParser(
description='Single video moment retrieval evaluation (DiDeMo)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Data
parser.add_argument('--val-list', type=Path, required=True,
help='JSON-file with corpus instances')
parser.add_argument('--test-list', type=Path, required=True,
help='JSON-file with corpus instances')
parser.add_argument('--h5-path', type=Path, default=Path(''),
help='HDF5-file with features')
# Architecture
parser.add_argument('--snapshot', type=Path, required=True,
help='JSON-file file with model parameters')
# logging
parser.add_argument('--dump', action='store_true',
help='Save log in text file and json')
parser.add_argument('--logfile', type=Path, default=Path(''),
help='Logging file')
parser.add_argument('--n-display', type=float, default=0.2,
help='logging rate during epoch')
parser.add_argument('--disable-tqdm', action='store_true',
help='Disable progress-bar')
parser.add_argument('--enable-tb', action='store_true',
help='Log to tensorboard. Nothing logged by this program')
# Debug
parser.add_argument('--debug', action='store_true',
help=('yield incorrect results! to verify we are gluing '
'things (dataset, model, eval) correctly'))
args = parser.parse_args()
def main(args):
if args.dump:
args.disable_tqdm = True
if len(args.logfile.name) == 0:
args.logfile = args.snapshot.with_name(
args.snapshot.stem + '_didemo-eval')
if args.logfile.exists():
raise ValueError(
f'{args.logfile} already exists. Please provide a logfile or'
'backup existing results.')
setup_logging(args)
if load_args_from_snapshot(args):
if len(args.snapshot.name) > 0:
# Override snapshot config with user argument
args = parser.parse_args(namespace=args)
logging.info(f'Loaded snapshot config: {args.snapshot}')
else:
logging.error('Unable to load {args.snapshot}, procedding with args.')
# Setup metrics
args.topk = torch.tensor(TOPK, dtype=torch.float)
logging.info('Single video retrieval evaluation (DiDeMo)')
logging.info(args)
logging.info('Setting up datasets')
dataset = f'Untrimmed{args.arch}'
no_visual = True
cues = {args.feat: None}
if args.h5_path:
cues = {args.feat: {'file': args.h5_path}}
no_visual = False
dataset_per_subsets = [('val', args.val_list), ('test', args.test_list)]
for i, (subset, filename) in enumerate(dataset_per_subsets):
dataset_setup = dict(
json_file=filename,
cues=cues,
loc=args.loc,
context=args.context,
debug=args.debug,
eval=True,
proposals_interface=DidemoICCV17SS(),
no_visual=no_visual
)
if no_visual:
dataset_setup['clip_length'] = args.clip_length
dataset_i = dataset_untrimmed.__dict__[dataset](**dataset_setup)
dataset_per_subsets[i] = (subset, dataset_i)
logging.info('Setting up model')
arch_setup = dict(
visual_size=dataset_i.visual_size[args.feat],
lang_size=dataset_i.language_size,
max_length=dataset_i.max_words,
embedding_size=args.embedding_size,
visual_hidden=args.visual_hidden,
lang_hidden=args.lang_hidden,
visual_layers=args.visual_layers,
)
net = model.__dict__[args.arch](**arch_setup)
snapshot = torch.load(args.snapshot.with_suffix('.pth.tar'),
map_location=lambda storage, loc: storage)
net.load_state_dict(snapshot['state_dict'])
net.eval()
torch.set_grad_enabled(False)
logging.info('Launch evaluation...')
ind = 2 if args.debug else 0
for subset, dataset in dataset_per_subsets:
results_per_instance = []
logging.info(f'Partition: {subset}')
for i, moment_data in tqdm(enumerate(dataset),
disable=args.disable_tqdm):
# torchify
lang_feat = torch.from_numpy(moment_data[ind])
len_query = torch.tensor(moment_data[ind + 1])
moment_feat = {key: torch.from_numpy(value)
for key, value in moment_data[ind + 2].items()}
gt_segment = torch.from_numpy(moment_data[-2])
segments = torch.from_numpy(moment_data[-1])
# Model evaluation
results, descending = net.predict(
lang_feat, len_query, moment_feat)
_, idx = results.sort(descending=descending)
sorted_segments = segments[idx, :]
result_i = didemo_evaluation(
gt_segment, sorted_segments, args.topk)
results_per_instance.append(result_i)
if args.disable_tqdm and (i + 1) % args.n_display == 0:
logging.info(f'Processed queries [{i}/{len(dataset)}]')
logging.info('Summarizing results')
results = torch.stack(results_per_instance).mean(dim=0)
for i, metric in enumerate(results):
key = f'{subset}_{METRICS[i]}'
setattr(args, key, metric.item())
logging.info(f'{subset} {METRICS[i]}: {getattr(args, key):.4f}')
# Dumping arguments
if args.dump:
filename = args.snapshot.with_name(
args.snapshot.stem + '_eval-didemo.json')
args.topk = args.topk.tolist()
args_dict = vars(args)
for key, value in args_dict.items():
if isinstance(value, Path):
args_dict[key] = str(value)
logging.info(f'Dumping resuts into {filename}')
with open(filename, 'x') as fid:
json.dump(args_dict, fid, indent=1, sort_keys=True)
if __name__ == '__main__':
main(args)