-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
143 lines (100 loc) · 3.08 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#%%
import glob
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
from IPython.display import Audio, display
from chiptune import chiptunes_synthesize
from midi_dataset import MidiDataset
from piano_roll_to_pretty_midi import to_pretty_midi
from train import Model
from util import crop_roll_128_to_88, pad_roll_88_to_128
#%%
def play_audio(audio):
display(Audio(audio, rate=44100))
ds = MidiDataset(prepared_data_path="data/prepared_gamer_data.pt", crop_size=36,downsample_factor=2)
dl = torch.utils.data.DataLoader(ds,batch_size=1,shuffle=True)
#%%
# Hide the GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Model(n_pitches=36,n_timesteps=32, architecture = "transformer", n_layers=5,n_hidden_size=256)
ckpt_path =glob.glob("lightning_logs/2rv228sb/checkpoints/*.ckpt")[0]
#ckpt_path = "artefacts/epoch=14-step=187080.ckpt"
#ckpt_path =glob.glob("lightning_logs/2c1uhoqg/checkpoints/*.ckpt")[0]
# n_layers = 5, n_hidden_size = 256
#%%
# test
model.eval()
for i in range(3):
x= torch.zeros((1,36,32,2))
x[0,0,0,0] = 1
mask = torch.ones((1,36,32,1))
mask[0,0,0,0] = 0
y,y_probs = model.forward(x,mask)
print(y_probs[0,0,1])
#%%
# Load the model
model.load_state_dict(torch.load(ckpt_path,map_location=torch.device(device))['state_dict'])
# %%
def play_roll(roll):
# pad to 88 with zeros
roll = torch.nn.functional.pad(roll,(0,0,30,22))
full_roll = pad_roll_88_to_128(roll)
# repeat full roll twice
full_roll = torch.cat([full_roll,full_roll],dim=-1)
full_roll=full_roll.numpy()
full_roll=full_roll.T
midi = to_pretty_midi(full_roll, constant_tempo=100)
audio = chiptunes_synthesize(midi)
play_audio(audio)
#%%
idx = np.random.randint(0,len(ds))
roll = torch.tensor(ds[idx]["piano_roll"])
roll =roll
mask = torch.zeros_like(roll)
plt.imshow(roll)
plt.show()
roll = roll[None,...]
play_roll(roll[0])
mask = mask[None,...]
mask[:,:,10:]=1
roll[:,:,10:]=0
play_roll(roll[0])
mask = mask.float()
roll = model.generate(30,0.1,x=roll, mask=mask,use_confidence_sampling=False,plot=True)[0]
play_roll(roll)
plt.imshow(roll)
plt.show()
#%%
N_PITCHES=36
N_TIMESTEPS=32
roll = np.zeros((1,N_PITCHES,N_TIMESTEPS))
mask = np.zeros((1,N_PITCHES,N_TIMESTEPS))
# major scale
#scale = [0,2,4,5,7,9,11]
# minor scale
# scale = [0,2,3,5,7,8,10]
# major pentatonic
#scale = [0,2,4,7,9]
scale =[0,1,2,3,4,5,6,7,8,9,10,11]
for i in range(1+(N_PITCHES//12)):
for j in scale:
note_idx = i*12+j
if note_idx < N_PITCHES:
mask[:,note_idx,:]=1
# set a random value to 1
#roll[:,np.random.randint(0,N_PITCHES),np.random.randint(0,N_TIMESTEPS)]=1
roll = torch.tensor(roll).float()
mask = torch.tensor(mask).float()
roll[0,12,0] = 1
mask[0,12,0] = 0
roll = model.generate(60,1.0,x=roll,mask=mask,activity_bias=0.0,use_confidence_sampling=False,plot=True)[0]
#roll = model.generate_with_random_order(1,100)[0]
# idx = np.random.randint(0,len(ds))
# roll = torch.tensor(ds[idx]["piano_roll"])
plt.imshow(roll)
plt.show()
play_roll(roll)
# %%