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Introduction

This book is devoted to the study of the symmetries in quantum mechanics. In many elementary exposi-
tions of quantum theory, one of the basic assumptions is that a group G of transformations is a group of
symmetries for a quantum system if G admits a unitary representation U acting on the Hilbert space H
associated with the system. The requirement that, given g ∈ G, the corresponding operator Ug is unitary
is motived by the need of preserving the transition probability between any two vector states ϕ,ψ ∈ H,

|〈ϕ,Ugψ〉|2 = |〈ϕ,ψ〉|2. (0.1)

The composition law
Ug1g2 = Ug1Ug2 (0.2)

encodes the assumption that the physical symmetries form a group of transformations on the set of vector
states.

However, as soon as one considers some explicit application, the above framework appears too restrictive.
For example, it is well known that the wavefunction ϕ of an electron changes its sign under a rotation of
2π; the Dirac equation is not invariant under the Poincaré group, but under its universal covering group;
the Schrödinger equation is invariant neither under the Galilei group nor under its universal covering
group.

The above pathologies have important physical consequences: bosons and fermions can not be coherently
superposed, the canonical position and momentum observables of a Galilei invariant particle do not
commute and particles with different mass cannot be coherently superposed.

For the Poincaré group the above problem was first solved by Wigner in his seminal paper [41] and it
was systematically studied by Bargmann, [1], and Mackey, [28] (see, also, the book of Varadarajan, [36],
for a detailed exposition of the theory).

These authors clarified that in order to preserve Eq. (0.1), one only has to require that U is either unitary
or antiunitary and Eq. (0.2) can be replaced by the weaker condition

Ug1g2 = m(g1, g2)Ug1Ug2 , (0.3)

where m(g1, g2) is a complex number of modulo one (U is said to be a projective representation). Moreover,
they showed that the study of projective representations can be reduced to the theory of ordinary unitary
representations by enlarging the physical group of symmetries. For example, the rotation group SO(3)
has to be replaced by its universal covering group SU(2). The trick of replacing the physical symmetry
group G with its universal covering group G∗ is so well known in the physics community that the group
G∗ itself is considered as the true physical symmetry group. However, for the Galilei group the covering
group is not enough and one needs even a larger group G, namely the universal central extension, in order
that the unitary (ordinary) representations of G exhaust all the possible projective representations of G.

The aim of this book is to present the theory one needs to construct the universal central extension from
the physical symmetry group in a unified, simple and mathematically coherent way. Most of the results
presented are known. However, we hope that our exposition could help the reader to understand the role
of the mathematical objects that are introduced in order to take care of the true projective character
of the representations in quantum mechanics. Finally, our construction of G is very explicit and can be
performed by simple linear algebraic tools. This theory is presented in Chapter 3.

Coming back to Eq. (0.1), this equality means that we regard symmetries as mathematical objects that
preserve the transition probability between pure states. The structure of transition probability is only one
of the various physically relevant structures associated with a quantum system. Other relevant structures
being, for instance, the convex structures of the sets of states and effects, the order structure of effects,
and the algebraic structure of observables. Therefore it is natural to define symmetry a bijective map that
preserves one of these structures. In Chapter 2 we present several possibilities of modeling a symmetry
and we show that they all coincide. Hence one may speak of symmetries of a quantum system. The set of
all possible symmetries forms a topological group Σ and, given a group G, a symmetry action is defined
as a continuous map σ from G to Σ such that
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σg1g2 = σg1σg1 .

As an application of these ideas, in Chapters 4 and 5 we treat in full detail the case of the Galilei group
both in 3 + 1 and in 2 + 1 dimensions. The choice of the Galilei group instead of the Poincaré group is
motivated first of all by the fact that the Poincaré group is already extensively studied in the literature.
Secondly, from a mathematical point of view, the Galilei group shows all the pathologies we cited above
and one needs the full theory of projective representations. We treat also the 2+1 dimensional case since
there is an increasing interest on the surface phenomena both from theoretical and from experimental
point of view.

The last chapter of the book is devoted to the study of Galilei invariant wave equations. In the framework
of the first quantisation, the need of wave equations naturally arises if one introduces the interaction of a
particle with a (classical) electromagnetic field by means of the minimal coupling principle. To this aim,
one has to describe the vector states as functions on the space-time satisfying a differential equation, the
wave equation, which is invariant with respect to the universal central extension of the Galilei group. In
Chapter 6 we describe how to obtain these wave equations without using Lagrangian (classical) techniques.
In particular we prove that for a particle of spin j there exists a linear wave equation, like the Dirac
equation for the Poincaré group, such that the particle acquires a gyromagnetic internal moment with
gyromagnetic ratio 1

j .

Since the book is devoted to the application of the abstract theory to the Galilei group, we always assume
that the symmetry group G is a connected Lie group. In particular we do not consider the problem of
discrete symmetries. In the appendix of the book we recall some basic mathematical definitions, facts, and
theorems needed in this book. The reader will find them as entries in Dictionary of Mathematical Notion
in the appendix. The statement of definitions and results are usually not given in their full generality but
they are adjusted to our needs.
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1

A synopsis of quantum mechanics

This chapter collects the basic elements of quantum mechanics in the form that is appropriate for an
analysis of space-time symmetries. A reader who is familiar with the Hilbert space formulation of quantum
mechanics may start directly with Chapter 2 of the book and return here if a need to check our notations
and terminology will arise.

In quantum mechanics a physical system is represented by means of a complex separable Hilbert space
H, with an inner product 〈·, ·〉. The general structure of any experiment – a preparation of a system,
followed by a measurement on it – is reflected in the concepts of states and observables, or, states and
effects. In their most rudimentary forms states and observables of the system are given respectively as
unit vectors ϕ ∈ H and selfadjoint operators A acting on H. The real number 〈ϕ,Aϕ〉 is then interpreted
as the expectation value of the measurement outcomes of the observable A when measured repeatedly on
the system in the same state ϕ.

The probabilistic content of the ‘expectation value postulate’ becomes more transparent when one con-
siders the spectral decomposition of A. Indeed, if A =

∫
R xdΠA(x) is the spectral decomposition of A,

then for any unit vector ϕ the number 〈ϕ,Aϕ〉 is just the expectation value of the probability measure
X 7→ 〈ϕ,ΠA(X)ϕ〉, where ΠA(X) is the spectral projection of A associated with the Borel subsets X of
the real line R. The number 〈ϕ, ΠA(X)ϕ〉 ∈ [0, 1] is interpreted as the probability that a measurement
of A leads to a result in the set X when the system is in the state ϕ.

Both theoretical and experimental reasons require a slight generalisation of the above framework. First
of all, in order to take into account statistical mixtures and to describe states of subsystems of compound
systems one needs also density matrices: vector states and density matrices are simply the states of the
system and are represented by positive trace one operators. Moreover, in order to give a probabilistic
interpretation to the theory, the only requirement is that the map X 7→ 〈ϕ,ΠA(X)ϕ〉 is a probability
measure on R. Hence, one may replace the projection operator ΠA(X) with a positive operator E(X)
such that E(X) is bounded by the identity operator I: such an operator is called an effect of the system.
An observable is then given as an effect valued measure X 7→ E(X).

In this generality, if tr
[·] denotes the trace of a trace class operator, then the real number tr

[
TE

] ∈ [0, 1]
gives the probability for an effect E in a state T .

In the next two sections we shall have a closer look at the basic sets of states and effects emphasizing
those structures which lead to natural formulations of symmetry transformations. We end this Chapter
with a brief remark on the notion of an observable. The material presented here is quite standard. For
further information on the basic structures of quantum mechanics the reader may consult, in addition to
the classics of von Neumann [37] and Dirac [13], any of her or his favorite books on the subject matter.
Most of the results quoted here are presented in a more detailed form, for instance, in the monographs
of Beltrametti and Cassinelli [3], Busch et al [8], Davies [12], Holevo [20, 21], Jauch [24], Ludwig [26], or
Varadarajan [36].



1.1 The set S of states and the set P of pure states

LetH be the Hilbert space of the quantum system. with inner product 〈·, ·〉, linear in the second argument.
Let B denote the set of bounded operators on H and let B1 be its subset of the trace class operators. We
denote by tr

[
T

]
the trace of an element T ∈ B1. If A, B are in B, we write A ≤ B, or B ≥ A, if B − A

is a positive operator.

A state T of the system is an element of B1 such that T is positive and of trace one. We let S be the set
of all states, that is,

S := {T ∈ B1 | T ≥ O, tr
[
T

]
= 1}. (1.1)

It is a convex subset of the set B1. Indeed, if T1, T2 ∈ S and 0 ≤ w ≤ 1, then wT1 + (1 − w)T2 ∈ S. In
fact, S is even σ-convex, that is, if (Ti)∞i=1 is a sequence of states and (wi)∞i=1 is a sequence of numbers
such that 0 ≤ wi ≤ 1,

∑∞
i=1 wi = 1, then the series

∑∞
i=1 wiTi converges in B1 in the trace norm ‖·‖1 to

an operator in S; we denote this state as
∑

wiTi.

The convex structure of S reflects the physical possibility of combining states into new states by mixing
them with given weights. If T = wT1 +(1−w)T2, we say that T is a mixture of the states T1 and T2 with
the weight w. The convex structure of S allows one to identify its extreme elements, that is, the elements
T ∈ S for which the condition T = wT1 + (1 − w)T2, with T1, T2 ∈ S, 0 < w < 1, is fulfilled only for
T = T1 = T2. The extreme states are thus those states which cannot be expressed as mixtures of other
states. Such states are often called pure states, a notion which, however, requires further qualification in
the presence of the so-called superselection rules. We let ex (S) denote the set of extreme states.

For any ϕ ∈ H, ϕ 6= 0, we let P [ϕ] denote the projection on the one-dimensional subspace [ϕ] := {cϕ | c ∈
C} generated by ϕ, that is,

P [ϕ]ψ := 〈ϕ,ψ〉
〈ϕ,ϕ〉 ϕ,

for all ψ ∈ H. Let P denote the set of one-dimensional projections on H. Then for any P ∈ P, P = P [ϕ]
for some nonzero ϕ ∈ P (H), the range of P .

The set P is an important subset of S. Indeed, if T ∈ S, then T , as a compact selfadjoint operator
has a decomposition T =

∑∞
i=0 wiPi, where (Pi) is a mutually orthogonal (PiPj = O) sequence in P,

wi ∈ [0, 1],
∑

wi = 1, with the series converging in the operator norm of B (since T is compact) but also
in the trace norm of B1 (since T is trace class). The numbers wi, wi 6= 0, are the nonzero eigenvalues of
T , each of them occurring in the decomposition as many times as given by the (finite) dimension of the
corresponding eigenspace. On the basis of this result it is straightforward to show that the set of extreme
states equals with the set of one-dimensional projections,

ex (S) = P. (1.2)

For that reason we call the extreme states also the vector states. The above result shows as well that the
σ-convex hull of P is the whole set of states,

σ − co (P) = S. (1.3)

In other words, vector states exhaust all states in the sense that any state can be expressed as a mixture
of at most countably many vector states.

It is a basic feature of quantum mechanics that any two (or more) vector states P1 and P2 can also be
combined into a new vector state by superposing them. To describe this familiar notion in an appropriate
way, let P1 ∨ P2 denote the least upper bound of P1 and P2. Then any P ∈ P which is contained in
P1 ∨ P2, that is, P ≤ P1 ∨ P2, is a superposition of P1 and P2. On the other hand, any vector state P
can be expressed as a superposition of a vector state P1 and another vector state P2 exactly when P1 is
not orthogonal to P , P1 6≤ P⊥, that is, if and only if tr

[
PP1

] 6= 0 (we are excluding here the trivial case
P2 = P ).

As well-known, the idea of superposition of vector states is most directly expressed using the linear
structure of the underlying Hilbert space. Indeed, if P1 = P [ϕ1] and P2 = P [ϕ2], then the superpositions
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of P1 and P2 are exactly those vector states which are of the form P = P [c1ϕ1 + c2ϕ2], with c1, c2 ∈ C.
If P = P [ϕ] is any vector state and P1 = P [ϕ1] is such that P1 6≤ P⊥, then 〈ϕ,ϕ1〉 6= 0, and P is a
superposition of P1 and, for instance, P [ϕ− 〈ϕ1, ϕ〉ϕ1].

1.2 The set E of effects and the set D of projections

Any state T ∈ S induces an expectation functional E 7→ tr
[
TE

]
on the set B of bounded operators. The

requirement that the numbers tr
[
TE

]
represent probabilities implies that the operator E is positive and

bounded by the unit operator: O ≤ E ≤ I. Such operators are called effects and the number tr
[
TE

]
is

the probability for the effect E in the state T . Let

E := {E ∈ B |O ≤ E ≤ I} (1.4)

denote the set of all effects.

As a subset of B, E is ordered, with O and I as its order bounds. The order on E is connected with
the basic probabilities of quantum mechanics. Indeed, for any E, F ∈ E, E ≤ F (in the sense that
F −E ≥ O) if and only if tr

[
TE

] ≤ tr
[
TF

]
for all T ∈ S. The map E 3 E 7→ E⊥ := I −E ∈ E is a kind

of complementation, since it reverses the order (if E ≤ F , then F⊥ ≤ E⊥) and, when applied twice, it
yields the identity ((E⊥)⊥ = E). These properties guarantee that the de Morgan laws hold in E in the
sense that if, for instance, the greatest lower bound E ∧ F of E, F ∈ E exists in E, then also the least
upper bound of their complements E⊥ and F⊥ exists in E and (E ∧F )⊥ = E⊥ ∨F⊥. However, E 7→ E⊥

is not an orthocomplementation since the greatest lower bound of E and E⊥ need not exist at all, or,
even when it does, it need not be the null effect.

The set of projections D is an important subset of E. For any E ∈ E, EE⊥ = E⊥E, so that EE⊥ is an
effect contained in both E and E⊥. Therefore, the projections can be characterized as those effects E for
which the set of lower bounds of E and E⊥, l.b. {E, E⊥}, contains only the null effect,

D = {D ∈ E | l.b. {D,D⊥} = {O} }. (1.5)

In addition to its order structure the set E of effects is a convex subset of the set of bounded operators B:
for any E,F ∈ E and 0 ≤ w ≤ 1, wE + (1− w)F ∈ E. This structure reflects the physical possibility of
combining measurements into new measurements by mixing them. An effect E ∈ E is an extreme effect
if the condition E = wE1 + (1−w)E2, with E1, E2 ∈ E, 0 < w < 1, implies that E = E1 = E2. Extreme
effects arise from pure measurements, that is, measurements which cannot be obtained by mixing some
other measurements. By a straightforward application of the spectral theorem one may show that the set
of extreme effects ex (E) equals with the set of projections,

ex (E) = D. (1.6)

The algebraic structure of B equips E also with the structure of a partial algebra. Indeed, for any
E, F ∈ E, their sum E + F is an effect whenever the operator E + F is bounded by the unit operator.
Moreover, for each E ∈ E, there is a unique E′ ∈ E such that E + E′ = I. Clearly, E′ = E⊥. This
structure is closely related to the physical possibility that the effects E and F for which E + F ≤ I can
be measured together. The partial sum leads to define an order on E: for any E, F ∈ E, we write E ≤ F
exactly when there is a G ∈ E such that E + G = F . Obviously, the order so defined agrees with the
order given by the notion of a positive operator. We observe also that, if D1, D2 ∈ D, then D1 + D2 is
an effect if and only if it is a projection, hence D itself is endowed with a partial algebra structure by
restricting on it the partially defined sum of E. The order defined on D by this partial sum is obviously
the standard one.

There is, however, an important difference between D and E for what concerns the relation between their
structures of partial algebras and ortho-ordered sets. In fact, given D1, D2 ∈ D, one has D1 + D2 ∈ D if
and only if D1 ≤ D⊥

2 and, in this case, D1 +D2 = D1 ∨D2. Hence, not only the partial algebra structure

3



of D determines its order structure, but the converse is also true. This is, however, not the case in the
set of effects. In fact, there exist effects E, F ∈ E such that E ≤ F⊥ and E +F ∈ E, but E +F 6= E ∨F ,
as it would be required if we were to define the partial sum in terms of the order. This is due to the fact
that E ∨ F need not exist at all. As an example, consider E = αD1, F = βD2, with 0 < α < β < 1,
D1 ≤ D⊥

2 and D1, D2 ∈ D. Then αD1 ≤ (βD2)⊥, αD1 + βD2 ∈ E, but αD1 ∨ βD2 does not exist.

With respect to the partial sum structure, the projections may again be distinguished as a special subset
of effects. Indeed, D is the set of effects E ∈ E for which the set of upper bounds u.b. {E,E′} = {I}, in
the order given by the sum.

The notion of coexistence of effects is a fundamental concept in quantum mechanics which is introduced
to describe effects that can be measured together by measuring a single observable. For any two effects
E, F ∈ F their coexistence can equivalently be formulated as follows: E and F are coexistence if and
only if there are effects E1, F1, G ∈ E such that E = E1 + G,F = F1 + G, and E1 + F1 + G ≤ I. When
applied to projections D1, D2 ∈ D ⊂ E their coexistence is equivalent to their compatibility, which, in
turn, is equivalent to the commutativity of D1 and D2.

1.3 Observables

We close this introductory chapter with a short remark on observables. In accordance with the idea that
an observable provides a representation of the possible events occurring as outcomes of a measurement,
we define an observable as an effect valued measure Π : F → E on a σ-algebra F of subsets of a nonempty
set Ω. That is, a function Π : F → B is an observable if 1) Π(X) ≥ O for all X ∈ F , 2) Π(Ω) = I, and
3) Π(∪Xi) =

∑
Π(Xi) for all disjoint sequences (Xi) ⊂ F , where the series converges in the weak, or,

equivalently in the strong operator topology of B. We recall that an observable Π : F → B is projection
valued, that is, Π(X) ∈ D for all X ∈ F , if and only if it is multiplicative, that is, Π(X∩Y ) = Π(X)Π(Y )
for all X, Y ∈ F . Finally, we note that an observable Π : F → B and a state T ∈ S defines a probability
measure

pΠ
T : F → [0, 1], X 7→ pΠ

T (X) := tr
[
TΠ(X)

]

which, in the minimal interpretation of quantum mechanics, is the probability distribution of the mea-
surement outcomes of Π in state T in the following sense: the number pΠ

T (X) is the probability that a
measurement of the observable Π on the system in the state T leads to a result in the set X. In accordance
with this interpretation, the number tr

[
TE

]
is the probability for the effect E ∈ E in the state T ∈ S,

and, since P ⊂ S and P ⊂ E, the number tr
[
P1P2

]
may also be interpreted as the transition probability

between the vector states P1 and P2.
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2

The Automorphism Group of Quantum Mechanics

The idea of symmetry receives its natural mathematical modelling as a transformation on the set of
entities the symmetry refers to. The basic structures of quantum mechanics are coded in the sets of
states and effects and in the duality between them. As described in Chapter 1 these sets possess various
physically relevant structures which define the corresponding automorphism groups. Any of them could
be used to formulate the notion of symmetry in quantum mechanics. The plurality here is, however,
deceptive since all these automorphism groups turn out to be isomorphic in a natural way. This chapter
is devoted to study several such groups and the natural connections between them.

Section 2.1 formulates the relevant automorphisms and investigates their main properties. Section 2.2
states and proofs the fundamental representation theorem, the Wigner theorem, for such automorphisms.
Section 2.3 summarizes and completes the study of the isomorphisms of the groups of state and effect
automorphisms.

We let H be the Hilbert space of the system and we use the notations and terminology introduced in
Chapter 1.

2.1 Automorphism groups of quantum mechanics

The various structures of the sets of states and effects and the function (T,E) 7→ tr
[
TE

]
lead to several

natural automorphisms of quantum mechanics. They will be discussed in the following subsections.

2.1.1 State automorphisms

The set S of states is a convex set, the convexity structure exhibiting the possibility of combining states
into new states by mixing them. This structure leads to the following definition of a state automorphism.

Definition 1. A function s : S → S is a state automorphism if
1) s is a bijection,
2) s(wT1 + (1− w)T2) = ws(T1) + (1− w)s(T2) for all T1, T2 ∈ S, 0 ≤ w ≤ 1.

Let Aut (S) denote the set of all state automorphisms. It is straightforward to confirm that Aut (S) is
a group with respect to the composition of functions. The duality (T, E) 7→ tr

[
TE

]
serves to define a

natural topology on Aut (S). Indeed, any pair of a state T and an effect E defines a function Aut (S) 3
s 7→ fT,E(s) := tr

[
s(T )E

] ∈ [0, 1], and we endow Aut (S) with the weakest topology in which all these
functions fT,E , T ∈ S, E ∈ E, are continuous. The following lemma gives some basic properties of state
automorphisms.



Lemma 1. Let s ∈ Aut (S).
1) s is the restriction of a unique trace-norm preserving linear operator on the set B1,r of the selfadjoint
trace class operators on H;
2) s(P) ⊆ P;
3) if s(P ) = P for all P ∈ P, then s is the identity.

Proof. 1) To extend s to B1,r := {T ∈ B1 |T ∗ = T} consider first a T ∈ B+
1,r := {T ∈ B1,r |T ≥ O}, and

define
s̃(T ) := ‖T‖1 s(T/ ‖T‖1)

for T 6= O and put s̃(T ) = O if T = O. Then, for any λ ≥ 0, one gets s̃(λT ) = λs̃(T ), which is the
positive homogeneity of s̃. Let now T1, T2 ∈ B+

1,r and write T1 + T2 in the form

T1 + T2 = (‖T1‖1 + ‖T2‖1)
( ‖T1‖1
‖T1‖1 + ‖T2‖1

T1

‖T1‖1
+

‖T2‖1
‖T1‖1 + ‖T2‖1

T2

‖T2‖1

)
.

The positive homogeneity of s̃ and the convexity of s then yield the additivity of s̃, s̃(T1 + T2) =
s̃(T1)+ s̃(T2). Consider next a T ∈ B1,r, write T = T+−T−, where T± = 1

2 (|T |±T ), with |T | := √
T ∗T ,

and define
ŝ(T ) := s̃(T+)− s̃(T−).

The additivity of s̃ and its homogeneity over non-negative real numbers give the linearity of ŝ. Also, if
T = T1 − T2 for some other T1, T2 ∈ B+

1,r, then T+ + T2 = T− + T1, so that by the additivity of s̃,
s̃(T+) − s̃(T−) = s̃(T1) − s̃(T2), which shows that ŝ is well defined. By construction, ŝ is positive, that
is, ŝ(T ) ≥ O for all T ≥ O. Moreover, it preserves the trace, since

tr
[
ŝ(T )

]
= tr

[∥∥T+
∥∥

1
s(T+/

∥∥T+
∥∥

1
)−

∥∥T−
∥∥

1
s(T−/

∥∥T−
∥∥

1
)
]

=
∥∥T+

∥∥
1
−

∥∥T−
∥∥

1
= tr

[
T+

]− tr
[
T−

]
= tr

[
T

]

for all T ∈ B1,r. If f : B1,r → B1,r is another positive linear map which extends s, then for any
T ∈ B1,r, f(T ) = f(T+ − T−) = f(T+) − f(T−) = ‖T+‖1 f(T+/ ‖T+‖1) − ‖T−‖1 f(T−/ ‖T−‖1) =
‖T+‖1 s(T+/ ‖T+‖1) − ‖T−‖1 s(T−/ ‖T−‖1) = ŝ(T ), showing that the extension is unique. A direct
computation shows, in addition, that ŝ−1 is the inverse of ŝ so that ŝ is a bijection. It remains to be
shown that ŝ preserves the trace norm. In fact, for any T ∈ B1,r, we have

‖ŝ(T )‖1 =
∥∥ŝ(T+ − T−)

∥∥
1

=
∥∥ŝ(T+)− ŝ(T−)

∥∥
1

≤ ∥∥ŝ(T+)
∥∥

1
+

∥∥ŝ(T−)
∥∥

1
=

∥∥T+
∥∥

1
+

∥∥T−
∥∥

1

= tr
[
T+ + T−

]
= tr

[|T |] = ‖T‖1 .

Since the inverse s−1 of s has the same properties than s one also has ‖T‖1 =
∥∥ŝ−1(ŝ(T ))

∥∥
1
≤ ‖ŝ(T )‖1,

so that ‖ŝ(T )‖1 = ‖T‖1.
2) Let P ∈ P and assume that s(P ) = wT1 + (1 − w)T2 for some 0 < w < 1, T1, T2 ∈ S. Then
P = ws−1(T1) + (1− w)s−1(T2), so that P = s−1(T1) = s−1(T2) and thus s(P ) = T1 = T2 showing that
s(P ) ∈ P.

3) Any T ∈ S can be expressed as T =
∑

i wiPi for some sequence (wi) of weights [0 ≤ wi ≤ 1,
∑

wi = 1]
and for some sequence of elements (Pi) ⊂ P with the series converging in the trace norm. By the continuity
of s, s(T ) =

∑
i wis(Pi), which shows that s(T ) = T for all T ∈ S whenever s(P ) = P for all P ∈ P. ut

Example 1. For any unitary operator U ∈ U define sU (T ) := UTU∗ for all T ∈ S. Clearly, sU is a state
automorphism. Let U1, U2 ∈ U. Then sU1 = sU2 if and only if U1 = zU2 for some complex number z of
modulus one. Indeed, if sU1(T ) = sU2(T ) for all T ∈ S, then, in particular, sU1(P ) = sU2(P ) for all P ∈ P,
so that U1ϕ = z(ϕ)U2ϕ, z(ϕ) ∈ T, for all ϕ ∈ H. It remains to be shown that the function ϕ 7→ z(ϕ) is
constant. Let c ∈ C, ϕ ∈ H. Then U1(cϕ) = cU1ϕ = cz(ϕ)U2ϕ and U1(cϕ) = z(cϕ)U2(cϕ) = cz(cϕ)U2ϕ,
so that z(ϕ) = z(cϕ). Let ϕ,ψ ∈ H. Then U1(ϕ + ψ) = U1ϕ + U1ψ = z(ϕ)U2ϕ + z(ψ)U2ψ as well as
U1(ϕ+ψ) = z(ϕ+ψ)U2(ϕ+ψ) = z(ϕ+ψ)U2ϕ+z(ϕ+ψ)U2ψ. Assume that ϕ 6= cψ, that is, ϕ and ψ are
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linearly independent. Then θ := (〈ψ, ψ〉ϕ− 〈ψ, ϕ〉ψ) / (〈ψ,ψ〉〈ϕ,ϕ〉 − 〈ϕ, ψ〉〈ψ, ϕ〉) is a vector such that
〈θ, ϕ〉 = 1 and 〈θ, ψ〉 = 0. Taking the scalar product of the vector U1(ϕ + ψ) with the vector U2θ then
yields z(ϕ) = z(ϕ + ψ) for any ψ ∈ H which is linearly independent of ϕ. Therefore, z(ϕ) is constant.
Similarly, if U ∈ U is an antiunitary operator, then sU , with sU (T ) := UTU∗, T ∈ S, is an element of
Aut (S), and two such automorphisms sU1 and sU2 are the same exactly when U1 = zU2 for some z ∈ T.

2.1.2 Vector state automorphisms

The set P of vector states is a distinguished subset of the set of all states, P = ex (S). These are the
states which cannot be expressed as mixtures of other states. However, they can be superposed into new
vector states and any vector state can be expressed as a superposition of some other vector states. We
use this structure to define the following notion of an automorphism of vector states.

Definition 2. A function p : P → P is a superposition automorphism if
1) p is a bijection,
2) for all P, P1, P2 ∈ P, P ≤ P1 ∨ P2 ⇐⇒ p(P ) ≤ p(P1) ∨ p(P2),
3) for all P, P1 ∈ P, P1 6≤ P⊥ ⇐⇒ p(P1) 6≤ p(P )⊥.

Let Auts(P) denote the set of all superposition automorphisms of vector states. It is a group with respect
to the composition of functions, and the functions p 7→ fP,E(p) := tr

[
p(P )E

]
, P ∈ P, E ∈ E, give it

a natural initial topology. Given U ∈ U ∪ U we can define pU : P → P as pU (P ) = UPU∗. Then
pU ∈ Auts(P) and pU1 = pU2 if and only if U1 = zU2 for some z ∈ T.

The notion of transition probability on P serves to define another natural notion of a vector state
automorphism. We call them simply vector state automorphisms.

Definition 3. A function p : P → P is a vector state automorphism if
1) p is a bijection,
2) tr

[
p(P1)p(P2)

]
= tr

[
P1P2

]
for all P1, P2 ∈ P.

Let Aut (P) denote the set of all vector state automorphisms. One may again readily check that Aut (P)
forms a group with respect to the function composition, pU ∈ Aut (P) for each U ∈ U∪U and the basic
duality defines a natural topology on Aut (P). It is the initial topology defined by the family of functions
fP1,P2 , P1, P2 ∈ P, where fP1,P2(p) := tr

[
p(P1)P2

]
.

Condition 3 of Definition 2 is equivalent with the condition that tr
[
p(P1)p(P )

]
= 0 if and only if tr

[
P1P

]
=

0. This is a weakening of condition 2 of Definition 3. Let Aut0(P) denote the group of the bijective
functions p : P → P which satisfy condition 3 of Definition 2, that is, which preserve transition probability
zero. Then Auts(P) ⊆ Aut0(P) and Aut (P) ⊆ Aut0(P). We shall see that, if the dimension of the
Hilbert space is greater than 2, these three groups are the same. On the other hand, if dimH = 2, then
Aut (P) ⊂ Aut0(P) = Auts(P). The following example exhibits the two dimensional case, whereas we
return to confirm the remaining statements in Section 2.3.1.

Example 2. Consider the two dimensional Hilbert spaceH = C2. The set P of one-dimensional projections
on C2 consists exactly of the operators of the form 1

2 (I+a·σ), where a ∈ R3, ‖a‖ = 1, and σ = (σ1, σ2, σ3)
are the Pauli matrices. Therefore, any p : P → P is of the form 1

2 (I + a · σ) 7→ 1
2 (I + a′ · σ) so that p

is bijective if and only if a 7→ a′ =: f(a) is a bijection on the unit sphere of R3. Writing a = (1, θ, φ),
θ ∈ [0, π], φ ∈ [0, 2π] we define a function f such that f(1, θ, φ) = (1, θ, φ) whenever θ 6= π

2 and we write
f(1, π

2 , φ) = (1, π
2 , g(φ)), with g(φ) = φ2/π for 0 ≤ φ ≤ π and g(φ) = (φ−π)2/π + π for π ≤ φ ≤ 2π. The

function p : P → P defined by f is clearly bijective. Using the fact that tr
[
1
2 (I + a · σ)1

2 (I + b · σ)
]

=
1
2 (1 + a · b) one immediately observes that p preserves transition probability zero but not, in general,
other transition probabilities. Hence p ∈ Aut0(P), but p /∈ Aut (P); this example is essentially due to
Uhlhorn [38]. Finally, in the two dimensional case condition 2 of Definition 2 is trivial, so that now
Aut0(P) = Auts(P).
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The set P is a subset of S. One may then ask whether a state automorphism, when restricted to the vector
states, defines a vector state automorphism. The following lemma answers this question affirmatively,
showing, in fact, that the restriction s 7→ s|P defines a group isomorphism Aut (S) → Aut (P).

Proposition 1. The function Aut (S) 3 s 7→ s|P ∈ Aut (P) is a group isomorphism.

Proof. Let s ∈ Aut (S). By Lemma 1 its restriction s|P on P is well-defined and bijective. Let ŝ be the
trace-norm preserving linear extension of s on B1,r, and let P1, P2 ∈ P. Then

2
√

1− tr
[
P1P2

]
= ‖P1 − P2‖1 = ‖ŝ (P1 − P2)‖1 = ‖ŝ(P1)− ŝ(P2)‖1
= ‖s(P1)− s(P2)‖1 = 2

√
1− tr

[
s(P1)s(P2)

]
,

so that s|P preserves the transition probabilities. The map s 7→ s|P is clearly a group homomorphism.
Its injectivity follows from the above proved fact that s is the identity whenever s|P is such. To prove
the surjectivity, let p ∈ Aut (P). Since any T ∈ S can be decomposed as T =

∑
wiPi we may define

sp(T ) :=
∑

wip(Pi). If T =
∑

j w′jP
′
j is another decomposition of T , then a direct computation shows

that
∑

j w′jp(P ′j) =
∑

i wip(Pi). Thus sp is well defined. Its convexity, injectivity, and surjectivity can
readily be confirmed. Clearly, sp|P = p, and the proof is complete. ut

2.1.3 Effect automorphisms

The set of effects E possesses three distinct, physically relevant basic structures, the ⊥-order structure,
the convexity structure, and the partial algebra structure. They all lead to natural notions of effect
automorphisms.

Definition 4. A function e : E → E is an effect ⊥-order automorphism if
1) e is a bijection,
2) for all E, F ∈ E, E ≤ F ⇐⇒ e(E) ≤ e(F ),
3) e(E⊥) = e(E)⊥ for all E ∈ E.

Definition 5. A function e : E → E is an effect sum automorphism if
1) e is a bijection,
2) for all E, F ∈ E, E + F ∈ E ⇐⇒ e(E) + e(F ) ∈ E,
3) e(E + F ) = e(E) + e(F ) whenever E + F ∈ E.

Definition 6. A function e : E → E is an effect convex automorphism if
1) e is a bijection,
2) e(wE + (1− w)F ) = we(E) + (1− w)e(F ) for all E, F ∈ E, 0 ≤ w ≤ 1.

Let Auto(E), Auts(E), and Autc(E) denote the sets of all effect ⊥-order, sum, and convex automorphisms,
respectively. They all form groups and the functions fT,E : e 7→ tr

[
Te(E)

]
, T ∈ S, E ∈ E, equip them

with natural initial topologies. Clearly, the functions eU , U ∈ U∪U, defined as eU (E) = UEU∗, E ∈ E,
belong to any of these groups. Apart from their apparent difference, the sum and convex automorphisms
of effects are identical.

Proposition 2. The groups Auts(E) and Autc(E) are the same.

Proof. Analogously with the extension of s ∈ Aut (S) to ŝ : B1,r → B1,r given in Lemma 1, any sum
automorphism e ∈ Auts(E) can uniquely be extended to a positive bijective linear map on Br, so that
its restriction to E is, in particular, a convex automorphism. Hence Auts(E) ⊆ Autc(E). Similarly, any
convex automorphism e ∈ Autc(E) extends uniquely to a positive bijective linear map on Br, and its
restriction to E is also a sum automorphism, Autc(E) ⊆ Auts(E). ut
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Proposition 3. Auts(E) is a subgroup of Auto(E).

Proof. Let e ∈ Auts(E). If E ≤ F then F = (F−E)+E, with F−E ∈ E, and thus e(F ) = e(F−E)+e(E),
so that e(E) ≤ e(F ). Since e−1 shares the properties of e, the converse is also true, that is, if e(E) ≤ e(F ),
then E ≤ F . The bijectivity of e and the fact that O = inf E and I = supE imply that e(O) = O and
e(I) = I. Since I = e(I) = e(E + E⊥) = e(E) + e(E⊥), one also has e(E)⊥ = e(E⊥). ut

Remark 1. An effect ⊥-order automorphism preserves the orthogonality of effects, that is, it has the
property 2) of Definition 5. On the other hand, if e : E → E is a bijection such that for any E, F ∈ E,
E + F ∈ E if an only if e(E) + e(F ) ∈ E, then e preserves also the order in both directions. Moreover,
since for any E ∈ E, E⊥ = sup{F ∈ E |E +F ≤ I}, one gets that e(E⊥) = e(E)⊥, that is, e is a ⊥-order
automorphism.

Remark 2. The notion of coexistence of effects is a fundamental property of effects. Therefore, one could
introduce the corresponding automorphism as a bijection e : E → E satisfying the following condition:
for any E,F ∈ E, E and F are coexistent if and only if e(E) and e(F ) are coexistent. The map e for
which e(O) = I, e(I) = O, and e(E) = E otherwise, is an example of such a transformation, showing
that coexistence preserving transformation need not preserve the order, and thus does not lead to useful
a characterization. However, when combined with an effect order automorphism, that is, property 2) of
Definition 4, the preservation of coexistence in the above sense suffice to determine the structure of such
automorphisms for dim(H) ≥ 3 [31].

We proceed to show that an effect sum automorphism defines a unique state automorphism. For that the
following two lemmas are needed, the first one being a direct consequence of the previous proposition
and the result concerning the limits of increasing bounded nets of selfadjoint operators.

Lemma 2. Let e ∈ Auts(E). Then
1) if (Ei)i∈I is any family of elements of E such that supi∈I Ei ∈ E and supi∈I e(Ei) ∈ E, then
supi∈I e(Ei) = e (supi∈I Ei) ;
2) if (Ei)i∈I is an increasing net of elements of E, then supi∈I Ei ∈ E and supi∈I e(Ei) ∈ E, and
supi∈I e(Ei) = e (supi∈I Ei) .

Lemma 3. Let m : E → [0, 1] be a function with the following properties:
1) if E + F ≤ I, then m(E + F ) = m(E) + m(F ),
2) if (Ei)i∈I is an increasing net in E, then m (supi∈I Ei) = supi∈I m(Ei).
There is a unique T ∈ B+

1,r such that for all E ∈ E, m(E) = tr
[
TE

]
.

Proof. We notice first that m(E) = m(E + O) = m(E) + m(O), so that m(O) = 0. We prove next that
for all E ∈ E and 0 < λ < 1,

m(λE) = λm(E).

If λ is rational this follows from the additivity of m. Let 0 < λ < 1 and let (rn) be an increasing sequence
of positive rationals converging to λ. Then

sup
n

(rnE) = λE

and this implies that

m(λE) = m

(
sup

n
{rnE}

)
= sup

n
m(rnE) = sup

n
(rnm(E)) = λm(E).

The (unique) extension of m to a positive linear map m̂ : Br → R is again straightforward.

The map m̂ is normal. Indeed, if (Ai)i∈I is an increasing norm bounded positive net in Br, then, letting
c = supi ‖Ai‖, (Ai/c)i∈I is an increasing net in E and we have
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m̂

(
sup

i
Ai

)
= cm̂

(
sup

i

Ai

c

)
= c sup

i
m

(
Ai

c

)
= sup

i
m̂(Ai).

Hence m̂ is a linear positive normal function on Br. It is well known that such an m̂ defines a unique
positive trace class operator T such that m̂(A) = tr

[
TA

]
for all A ∈ Br, see, for instance [12, Lemma 6.1,

Chpt. 1]. Since m̂ is uniquely defined by its restriction m on E the proof is complete. ut

Proposition 4. Let e ∈ Auts(E). There is a unique se ∈ Aut (S) such that se(P ) = e(P ) for all P ∈ P.
Moreover, the correspondence Auts(E) 3 e 7→ se ∈ Aut (S) is an injective group homomorphism.

Proof. Let e ∈ Auts(E). For all T ∈ S define the map from E to [0, 1] by E 7→ tr
[
Te−1(E)

]
. By the

above two lemmas there is a unique positive trace class operator T ′ such that tr
[
Te−1(E)

]
= tr

[
T ′E

]
for all E ∈ E. Taking E = I we have tr

[
T ′

]
= 1, hence T ′ ∈ S. We define se from S to S as se(T ) := T ′

so that tr
[
se(T )E

]
= tr

[
Te−1(E)

]
, for all E ∈ E. Using this formula it is straightforward to prove that

se ∈ Aut (S) and that e 7→ se is a group homomorphism. Moreover, suppose that se(T ) = T for all T ∈ S,
then tr

[
T (E − e−1(E))

]
= 0, E ∈ E, for all T ∈ S. Hence E = e−1(E) for all E ∈ E, that is, e is the

identity. This shows the injectivity of the map e 7→ se and ends the proof. ut

2.1.4 Automorphisms on D

The set D of projections is a subset of E. In fact, D = ex (E). As discussed in Chapter 1, the ⊥-order
structure and the partial algebra structure coincide on D. Consequently, Definitions 4 and 5 when applied
to D are the same, and we choose to consider the following notion of an automorphism on D.

Definition 7. A function d : D → D is a D-automorphism if
1) d is a bijection,
2) for all D1, D2 ∈ D, D1 ≤ D2 ⇐⇒ d(D1) ≤ d(D2),
3) d(D⊥) = d(D)⊥ for all D ∈ D.

The set Aut (D) of all D-automorphisms is a group with respect to the composition of functions and it is
a topological space with respect to the initial topology given by the functions fT,D : d 7→ tr

[
Td(D)

]
, T ∈

S, D ∈ D. Again, the functions dU , U ∈ U ∪U, defined as dU (D) = UDU∗, are elements of Aut (D).

Since D ⊂ E one may consider the restriction of an e ∈ Auto(E) on D. One gets:

Proposition 5. The function Auto(E) 3 e 7→ e|D ∈ Aut (D) is a group homomorphism.

Proof. Let e ∈ Auto(E). Then for any E, F,G ∈ E, G is a lower bound of E and F if and only if e(G) is
a lower bound of e(E) and e(F ). Since D consists exactly of those effects E ∈ E for which O is the only
lower bound of E and E⊥ one thus has e(D) ⊆ D. Clearly, (e1 ◦e2)|D = e1|D ◦e2|D and e−1|D = (e|D)−1.
ut

The homomorphism of the above lemma is, in fact, injective whenever the dimension of the Hilbert space
is, at least, two. We shall prove this result, which is due to Ludwig [26, Theorem 5.21, p. 226], using the
following characterization of effects [19]:

Lemma 4. For any E ∈ E,
E = ∨P∈P(E ∧ P ) = ∨P∈Pλ(E,P )P,

where
λ(E, P ) := sup{λ ∈ [0, 1] |λP ≤ E}. (2.1)

In fact, λ(E, P ) = max{λ ∈ [0, 1] |λP ≤ E}, and if ϕ ∈ H, ‖ϕ‖ = 1, is such that Pϕ = ϕ, then
λ(E, P ) =

∥∥E−1/2ϕ
∥∥−2

, whenever ϕ ∈ ran(E1/2), whereas λ(E, P ) = 0, otherwise.
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Proposition 6. If dim(H) ≥ 2, then the function Auto(E) 3 e 7→ e|D ∈ Aut (D) is injective.

Proof. It suffices to show that if e ∈ Aut(E) is such that e(D) = D, for all D ∈ D, then e is the identity
function. Therefore, assume that e(D) = D, for all D ∈ D. Then, in particular, e(P ) = P , for all P ∈ P.
Thus, for any γ ∈ [0, 1], P ∈ P, e(γP ) ≤ e(P ) = P , so that

e(γP ) = τ(γ, P )P (2.2)

for some τ(γ, P ) ∈ [0, 1]. The proof now consists of showing that, for any γ ∈ [0, 1] and for any P ∈ P,
τ(γ, P ) = γ. If this is the case, then, for any E ∈ E,

e(E) = ∨P∈Pe(λ(E, P )P )
= ∨P∈Pτ(λ(E, P ), P )P
= ∨P∈Pλ(E,P )P
= E

and we are through. We proceed in three steps.

Step 1. Let E ∈ E. From (2.1) we obtain that

e(E) = ∨P∈Pe(λ(E,P )P ) = ∨P∈Pτ(λ(E, P ), P )P

and also that
e(E) = ∨P∈Pλ(e(E), P )P.

Taking the meet of both expression with any 1 dimensional projection we see that

τ(λ(E, P ), P ) = λ(e(E), P ) (2.3)

for any E ∈ E, P ∈ P.

Step 2. We next show that the function τ does not depend on P , that is,

τ(γ, P ) = τ(γ) (2.4)

for each γ ∈ [0, 1], P ∈ P. Clearly τ(0, P ) = 0 and τ(1, P ) = 1 for all P ∈ P. Thus, consider a fixed
0 < γ < 1 and let P, Q ∈ P be such that QP 6= O. Define

µ =
1− γ

1− γ(1− tr
[
PQ

]
)
. (2.5)

Observe that 1− γ ≤ µ < 1 and define E := I − µQ. Then ran(E1/2) = H, so that, by Lemma 4,

λ(E,P ) =
1

tr
[
E−1P

] =
µ− 1

µ(1− tr
[
QP

]
)− 1

= γ.

Hence, due to (2.3),
τ(γ, P ) = λ(e(E), P ). (2.6)

On the other hand e(E) = I − τ(µ, Q)Q and again we have ran(e(E)1/2) = H, so that,

λ(e(E), P ) =
1

tr
[
e(E)−1P

] =
τ(µ,Q)− 1

τ(µ, Q)(1− tr
[
QP

]
)− 1

. (2.7)

Comparing (2.6) and (2.7) we have

τ(γ, P ) =
τ(µ,Q)− 1

τ(µ,Q)(1− tr
[
QP

]
)− 1

.

From (2.5) we get
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(1− tr
[
PQ

]
) =

µ + γ − 1
µγ

,

hence

τ(γ, P ) =
γµ[τ(µ,Q)− 1]

τ(µ,Q)(µ + γ − 1)− γµ
. (2.8)

We then see that τ(γ, P ) fulfills equation (2.8), where Q is any 1-dimensional projection such that
tr

[
PQ

] 6= 0 and µ is defined by (2.5). On the other hand, µ depends only on γ and tr
[
PQ

]
. Given

P1, P2 ∈ P, one can find Q ∈ P such that tr
[
P1Q

]
= tr

[
P2Q

] 6= 0 so that (2.8) implies τ(γ, P1) = τ(γ, P2)
and this proves that τ does not depend on P . Equation (2.4) is thus established.

Step 3. Now suppose that dimH ≥ 2. It is clear from (2.5) that if 1 − γ ≤ α < 1, then we can choose
P, Q ∈ P such that µ = α. Hence (2.8) gives

τ(γ) =
γα[τ(α)− 1]

τ(α)(α + γ − 1)− γα
(2.9)

for all α such that 1− γ ≤ α < 1. Choosing α = 1− γ in (2.9), since γ ∈ (0, 1) is arbitrary, we obtain

τ(γ) = 1− τ(1− γ) (2.10)

for any γ ∈ (0, 1). Observe now that (2.9) can be rewritten as

τ(γ) =
a(α)γ

1 + γ(a(α)− 1)
1− γ ≤ α < 1, (2.11)

with a(α) = α
α−1

τ(α)−1
τ(α) . We then obtain from (2.11) that

a(α) =
1− γ

γ

τ(γ)
1− τ(γ)

1− γ ≤ α < 1,

from which we conclude that a(α) is a constant. By comparison with (2.10) we see that in fact a(α) = 1
so that τ(γ) = γ for all γ ∈ [0, 1]. This concludes the proof. ut

Proposition 7. Let p ∈ Aut0(P). There is a unique dp ∈ Aut (D) such that dp(P ) = p(P ) for all P ∈ P.
Moreover, the map Aut0(P) 3 p 7→ dp ∈ Aut (D) is a group isomorphism.

Proof. In this proof we identify the projection lattice D with the lattice M of all closed subspaces of H.
Let p ∈ Aut0(P). For all M ⊂ H, M 6= {0}, let

dp(M) = {ψ ∈ p([φ]) : φ ∈ M, φ 6= 0},

and put dp({0}) = {0}. We observe that dp−1(dp(M)) = {Φ ∈ p−1([ψ]) : ψ ∈ dp([φ]), φ ∈ M, φ 6= 0}
= {Φ ∈ p−1(p[φ]) : φ ∈ M, φ 6= 0} = CM . In the same way we have that dp(dp−1(M)) = CM . Let
now M ∈ M. We then have dp(M⊥) = dp(M)⊥. In fact, if φ ∈ M and ψ ∈ M⊥ are nonzero vectors,
then p(P [φ]) ⊥ p([ψ]). Hence dp(M) ⊥ dp(M⊥), dp(M⊥) ⊂ dp(M)⊥ and, since M = dp−1(dp(M)), one
concludes that dp(M⊥) = dp(M)⊥. Moreover, since M is a closed subspace, dp(M) = dp((M⊥)⊥) =
(dp(M⊥))⊥, proving that dp(M) is a closed subspace. We denote by dp the map from M to M sending M
to dp(M). Obviously dp is bijective and preserves the order and the orthogonality, that is, dp ∈ Aut (D).
Finally, by construction, dp(P ) = p(P ) for all P ∈ P. A standard calculation shows that the map p 7→ dp

is a group homomorphism. Its injectivity is obvious. Finally, if d ∈ Aut (D), then obviously d(P) = P and
d preserves orthogonality, so that d|P ∈ Aut0(P) and this shows surjectivity. The proof is now complete.
ut

Proposition 8. Let dim(H) ≥ 3. Given d ∈ Aut (D) there is a unique sd ∈ Aut (S) such that sd(P ) =
d(P ) for all P ∈ P. Moreover, the map Aut (D) 3 d 7→ sd ∈ Aut (S) is an injective group homomorphism.
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Proof. Let d ∈ Aut (D). Since d is a lattice orthoisomorphism on D the mapping D 3 D 7→ tr
[
Td−1(D)

] ∈
[0, 1] is a generalized probability measure on D for all T ∈ S. According to a theorem of Gleason [18] (which
holds if the dimension of H is greater than 2) there is a unique T ′ ∈ S such that tr

[
T ′D

]
= tr

[
Td−1(D)

]
for all D ∈ D. The induced function T 7→ T ′ =: sd(T ) is one-to-one onto and it preserves the convex
structure of S, that is, sd ∈ Aut (S). Clearly the map d 7→ sd is a group homomorphism. We show now that
sd(P ) = d(P ) for all P ∈ P. It is sufficient to prove that tr

[
sd(P1)P2

]
= tr

[
d(P1)P2

]
, P1, P2 ∈ P. Since

sd, restricted to P, is a P-automorphism we have tr
[
sd(P1)P2

]
= tr

[
P1s

−1
d (P2)

]
= tr

[
P1sd−1(P2)

]
=

tr
[
d(P1)P2

]
. Suppose now that sd(T ) = T for all T ∈ S. Then d(P ) = P for all P ∈ P. Hence,

d(D) = d(∨P≤DP ) = ∨P≤Dd(P ) = ∨P≤DP = D for any D ∈ D, which shows that d is the identity, and
the map d 7→ sd is injective. ut

To close this subsection consider an effect ⊥-order automorphism e ∈ Auto(E) and let E = ∨Pλ(E,P )P
be the decomposition of E ∈ E given in Lemma 4. Then

e(E) = e (∨Pλ(E,P )P ) = ∨Pe(λ(E, P )P ) = ∨Pλ (e(λ(E,P )P ), e(P )) e(P ).

Using arguments similar to those applied in the proof of Proposition 6, Mólnar and Páles showed [30]
that λ (e(λ(E, P )P ), e(P )) = λ(E,P ) and that tr

[
P1P2

]
= tr

[
e(P1)e(P2)

]
for any two P1, P2 ∈ P. We

formulate these results in a form of a lemma.

Lemma 5. Assume that dim(H) ≥ 2. The restriction of any e ∈ Auto(E) in P is a vector state auto-
morphism. Moreover, for any E ∈ E, e(E) = ∨Pλ(E, P )e(P ).

2.1.5 Automorphisms of H

With a slight abuse of language, the automorphisms of the Hilbert space H are either the bijective linear
maps U : H → H which preserve the inner product, that is, 〈Uϕ, Uψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ H, or the
bijective antilinear maps U : H → H which reverse the inner product, that is, 〈Uϕ, Uψ〉 = 〈ψ, ϕ〉 for
all ϕ,ψ ∈ H. They are exactly the unitary and antiunitary operators on H. The set Aut (H) = U ∪U
as well as the quotient space Σ = Aut (H)/T, where T = {zI | z ∈ T}, are topological groups with the
properties described in the Dictionary A.1 and in the Appendix A.2.

Let σ ∈ Σ and U ∈ σ. Define the function gσ : Br → Br, by gσ(A) := UAU∗. Applying the arguments of
Example 1, one observes that gσ is well defined and gσ1 = gσ2 only if σ1 = σ2. Moreover, when restricted
to any of the sets P, S, D, and E, endowed with any of the relevant structures, gσ defines a corresponding
automorphism. We thus conclude with the following proposition.

Proposition 9. The map σ 7→ gσ defines an injective group homomorphism of Σ to Aut (S), Auts(P),
Aut (P), Aut0(P), Auto(E), Auts(E), and to Aut (D).

From now on we denote the restrictions of the functions gσ to the sets P, S, D, and E, respectively, as
pσ, sσ, dσ, and eσ.

2.2 The Wigner theorem

This sections contains the Wigner theorem and two corollaries to it. The proof presented here, originally
published in [9], is a modification of Bargmann’s proof [2] of Wigner’s classic result [40].

2.2.1 The theorem

Theorem 1. Let p ∈ Aut (P). There is a U ∈ U ∪U such that p = pU , that is, p(P ) = UPU∗ for all
P ∈ P. U is unique up to a phase factor.
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Proof. Fix p ∈ Aut (P). Let ω ∈ H, ω 6= 0, be a fixed vector and define

Oω :=
{
ϕ ∈ H | 〈ω, ϕ〉 > 0

}
.

We observe that Oω is a cone, that is, Oω +Oω ⊂ Oω and λOω ⊂ Oω, λ > 0. Let ω′ be a vector in the
range of the projection p(P [ω]) such that ‖ω′‖ = ‖ω‖ and define the cone Oω′ . The proof of the theorem
will now be split in five parts.

Part 1. We show that there is a function

Tω : Oω → Oω′

such that for all ϕ,ϕ1, ϕ2 ∈ Oω, λ > 0,

‖Tωϕ‖ = ‖ϕ‖ , (2.12)
Tω(λϕ) = λTωϕ, (2.13)
Tω(ϕ1 + ϕ2) = Tωϕ1 + Tωϕ2, (2.14)
P [T ]ωϕ = p(P [ϕ]). (2.15)

To define Tω we observe first that for any vector ϕ ∈ Oω, there is a unique vector ψ ∈ Oω′ , ‖ψ‖ = ‖ϕ‖,
such that p(P [ϕ]) = P [ψ]. We denote ψ = Tωϕ. This defines a function Tω : Oω → Oω′ . Observe that
Tωω = ω′. By definition, Tω is norm preserving, positively homogeneous, and p(P [ϕ]) = P [Tωϕ]. Also for
any ϕ1, ϕ2 ∈ Oω,

|〈Tωϕ1, Tωϕ2〉| = |〈ϕ1, ϕ2〉|. (2.16)

We prove next the additivity of Tω. Let ϕ1, ϕ2 ∈ Oω. By the definition of Oω, ϕ1 and ϕ2 are linearly
dependent (over C) if and only if ϕ1 = λϕ2 for some λ > 0. If ϕ1 = λϕ2 then Tω(ϕ1 + ϕ2) = Tω

(
(λ +

1)ϕ2

)
= (λ + 1)Tωϕ2 = λTωϕ2 + Tϕ2 = Tωϕ1 + Tωϕ2. Assume now that ϕ1, ϕ2 are linearly independent.

We observe first that for any ψ ∈ H, if 〈Tωϕi, ψ〉 = 0, i = 1, 2, then 〈ϕi, γ〉 = 0, i = 1, 2, for any
γ ∈ p−1(P [ψ]), and thus 〈Tω(ϕ1 + ϕ2), ψ〉 = 0. Hence

Tω(ϕ1 + ϕ2) = z1Tωϕ1 + z2Tωϕ2

for some z1, z2 ∈ C. Since ϕ1, ϕ2 are linearly independent there are two uniquely defined vectors θ1, θ2

in [ϕ1, ϕ2], the subspace generated by the vectors ϕ1, ϕ2, such that 〈θi, ϕj〉 = δij , i, j = 1, 2. In fact, they
are

θi =
(〈ϕj , ϕj〉ϕi − 〈ϕj , ϕi〉ϕj

)
/
(〈ϕj , ϕj〉〈ϕi, ϕi〉 − 〈ϕi, ϕj〉〈ϕj , ϕi〉

)
,

i = 1, 2, i 6= j. Writing ϕ = ϕ1 + ϕ2,

1 = 〈ϕ, θi〉 = |〈ϕ, θi〉|2 = |〈Tωϕ, Tωθi〉|2 = |zi|2

so that that |zi| = 1. Since ϕ1, ϕ2, ϕ ∈ Oω and Tωϕ1, Tωϕ2, Tωϕ ∈ Oω′ one has 〈ω, ϕ〉 = |〈ω, ϕ〉| =
|〈ω′, Tωϕ〉| = 〈ω′, Tωϕ〉, which gives

〈ω, ϕ1〉+ 〈ω, ϕ2〉 = z1〈ω, ϕ1〉+ z2〈ω, ϕ2〉. (2.17)

But then

〈ω, ϕ1〉+ 〈ω, ϕ2〉 =
∣∣〈ω, ϕ1〉+ 〈ω, ϕ2〉

∣∣
=

∣∣z1〈ω, ϕ1〉+ z2〈ω, ϕ2〉
∣∣

≤ ∣∣z1〈ω, ϕ1〉
∣∣ +

∣∣z2〈ω, ϕ2〉
∣∣

= 〈ω, ϕ1〉+ 〈ω, ϕ2〉,

which shows that z1〈ω, ϕ1〉 = λz2〈ω, ϕ2〉 for some λ ∈ R. Therefore, 0 < z1〈ω, ϕ1〉 + z2〈ω, ϕ2〉 = (1 +
λ)z2〈ω, ϕ2〉, which shows that the imaginary part of z2 equals 0 and one thus has z2 = ±1. Similarly,
one gets z1 = ±1. From Equation 2.17, where 〈ω, ϕ1〉, 〈ω, ϕ2〉 > 0, one finally gets z1 = z2 = 1. This
completes the proof of the additivity of Tω.
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Part 2. Let ψ ∈ H, ψ 6= 0, and assume that T is any function Oψ → H, having the properties 2.12-2.15.
Then for any ϕ ∈ Oω ∩ Oψ,

T (ϕ) = zTω(ϕ), (2.18)

for some z ∈ T. Indeed, by the property (d), it holds that for any ϕ ∈ Oω ∩ Oψ, Tϕ = f(ϕ)Tωϕ, with
f(ϕ) ∈ T, and it remains to be shown that f(ϕ) is constant on Oω ∩Oψ. For any λ > 0 and ϕ ∈ Oω ∩Oψ,
T (λϕ) = f(λϕ)Tω(λϕ) = λf(λϕ)Tωϕ and T (λϕ) = λTϕ = λf(ϕ)Tωϕ. Hence λf(λϕ)Tωϕ = λf(ϕ)Tωϕ.
Since Tωϕ 6= 0 for ϕ 6= 0, this gives f(ϕ) = f(λϕ). Consider next vectors ϕ1, ϕ2 ∈ Oω ∩ Oψ such
that ϕ1 6= λϕ2 for any λ > 0 (so that ϕ1, ϕ2 are linearly independent over C). Then T (ϕ1 + ϕ2) =
f(ϕ1 + ϕ2)Tω(ϕ1 + ϕ2) = f(ϕ1)Tωϕ1 + f(ϕ2)Tωϕ2. Using again the above vectors θ1, θ2, associated with
ϕ1, ϕ2 one easily gets, e.g., f(ϕ1 +ϕ2) = f(ϕ1) for any ϕ2 ∈ Oω∩Oψ. Hence f(ϕ) is constant on Oω∩Oψ

and thus Tω is unique modulo a phase on the cone Oω .

Part 3. Let ω ∈ H, ω 6= 0, and let Tω : Oω → Oω′ be defined as in part 1. We show next that Tω has one
of the following two properties, either

〈Tωϕ1, Tωϕ2〉 = 〈ϕ1, ϕ2〉 (2.19)

for all ϕ1, ϕ2 ∈ Oω, or
〈Tωϕ1, Tωϕ2〉 = 〈ϕ2, ϕ1〉 (2.20)

for all ϕ1, ϕ2 ∈ Oω. First of all, let ϕ1, ϕ2 ∈ Oω. Then 〈Tω(ϕ1 + ϕ2), Tω(ϕ1 + ϕ2)〉 = 〈ϕ1 + ϕ2, ϕ1 + ϕ2〉.
Using the additivity of Tω and the inner product this shows, in view of (2.16), that either 〈Tωϕ1, Tωϕ2〉 =
〈ϕ1, ϕ2〉 or 〈Tωϕ1, Tωϕ2〉 = 〈ϕ2, ϕ1〉. We show next that for a fixed ϕ ∈ Oω, either 〈Tωϕ, Tωψ〉 = 〈ϕ,ψ〉
or 〈Tωϕ, Tωψ〉 = 〈ψ, ϕ〉 for all ψ ∈ Oω. To prove this assume on the contrary that there are vectors
ϕ1, ϕ2 ∈ Oω such that 〈Tωϕ, Tωϕ1〉 = 〈ϕ,ϕ1〉(6= 〈ϕ1, ϕ〉) and 〈Tωϕ, Tωϕ2〉 = 〈ϕ2, ϕ〉(6= 〈ϕ,ϕ2〉). By a
direct computation of 〈Tωϕ, Tω(ϕ1 + ϕ2)〉 one observes that this leads to a contradiction. By a similar
counter argument one shows finally that either 〈Tωϕ, Tωψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ Oω or 〈Tωϕ, Tωψ〉 =
〈ψ,ϕ〉 for all ψ ∈ Oω.

Part 4. We construct next a unitary or antiunitary operator U of H for which p(P ) = UPU∗ for all
P ∈ P.

Let ω ∈ H and Tω : Oω → Oω′ be given as in part one. Let M = [ω]⊥ and M ′ = [ω′]⊥ and define a
function S : M → M ′ by

Sϕ := Tω+ϕϕ, ϕ 6= 0
Sϕ := 0, ϕ = 0

where Tω+ϕ is the operator on the cone Oω+ϕ with the choice of the phase given by Tω+ϕω = ω′. S
is well-defined since for any ϕ ∈ M , ϕ 6= 0, we have ϕ ∈ Oω+ϕ. Moreover, for any two ϕ,ψ ∈ M ,
Tω+ϕ = Tω+ψ on the cone Oω+ϕ∩Oω+ψ, which contains at least the vector ω for which Tω+ϕω = Tω+ψω.
According to part 3 any Tω+ϕ, ϕ ∈ M , has either the property (2.19) or the property (2.20). Due to the
fact that for all ϕ,ψ ∈ M , Tω+ϕ = Tω+ψ on the intersection of their defining cones, all the operators
Tω+ϕ, ϕ ∈ M , are of the type (2.19) or they all are of the type (2.20). We proceed to show that S is in
the first case a unitary operator and in the second case an antiunitary operator. In fact the proofs of the
two different cases are similar and we treat only the case that all Tω+ϕ, ϕ ∈ M , are of the type (2.19).

We show first that for any ϕ ∈ M, λ ∈ C, S(λϕ) = λSϕ. In fact, if λϕ = 0, the result is obvious, otherwise
we have

〈Tω(ω + λϕ), Tω(ω + ϕ)〉 = 〈ω + λϕ, ω + ϕ〉
= ‖ω‖2 + λ̄〈ϕ,ϕ〉

〈Tω(ω + λϕ), Tω(ω + ϕ)〉 = 〈Tω+λϕ(ω + λϕ), Tω+ϕ(ω + ϕ)〉
= 〈Tω+λϕω + Tω+λϕ(λϕ), Tω+ϕω + Tω+ϕϕ〉
= 〈ω′ + S(λϕ), ω′ + Sϕ〉
= ‖ω′‖2 + 〈S(λϕ), Sϕ〉.
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Since ‖ω‖ = ‖ω′‖ this gives 〈S(λϕ), Sϕ〉 = λ̄〈ϕ, ϕ〉. But S(λϕ) = Tω+λϕ(λϕ) ∈ p(P [λ]ϕ) and Sϕ ∈
p(P [ϕ]), which shows that S(λϕ) = zSϕ for some z ∈ C. Therefore, λ̄〈ϕ, ϕ〉 = 〈S(λϕ), Sϕ〉 = z̄〈Sϕ, Sϕ〉 =
z̄〈ϕ,ϕ〉, which gives z̄ = λ̄, and thus S(λϕ) = λSϕ.

To show the additivity of S on M , let ϕ1, ϕ2 ∈ M . If ϕ1 = λϕ2, λ ∈ C, then the homogeneity of S gives
the additivity. Therefore, assume that ϕ1, ϕ2 are linearly independent. Let θ1, θ2 be the unique vectors
in [ϕ1, ϕ2] such that 〈θi, ϕj〉 = δij . Then

S(ϕ1 + ϕ2) = Tω+ϕ1+ϕ2(ϕ1 + ϕ2)
= Tω+θ1+θ2(ϕ1 + ϕ2)
= Tω+θ1+θ2ϕ1 + Tω+θ1+θ2ϕ2

= Tω+ϕ1ϕ1 + Tω+ϕ2ϕ2 = Sϕ1 + Sϕ2.

Hence S : M → M ′ is a linear map. It is also isometric since for any ϕ ∈ M , ϕ 6= 0, 〈Sϕ, Sϕ〉 =
〈Tω+ϕϕ, Tω+ϕϕ〉 = 〈Tϕϕ, Tϕϕ〉 = 〈ϕ,ϕ〉. Moreover, for any unit vector ϕ ∈ M one has P [S]ϕ = p(P [ϕ]).
To show the surjectivity of S, let ψ ∈ M ′, ψ 6= 0. Since p is surjective there is a unit vector ϕ ∈ M such
that p(P [ϕ]) = P [ψ]. Hence Sϕ = λψ for some λ ∈ C. Since ‖ϕ‖ = 1, also ‖Sϕ‖ = 1 so that λ 6= 0 and
thus S(ϕ

λ ) = ψ. This concludes the proof of the unitarity of S.

We now have H = [ω]⊕M = [ω′]⊕M ′ and we define U : H → H such that U(λω +ϕ) = λω′+Sϕ for all
λ ∈ C, ϕ ∈ M . If S is antiunitary we define U instead by U(λω + ϕ) = λ̄ω′ + Sϕ. Clearly, the operator
U is unitary (antiunitary) and it is related to the function p according to p(P ) = UPU∗ for any P ∈ P.

Part 5. Let V : H → H be related to p according to p(P ) = V PV ∗, P ∈ P. By change of phase we may
assume that V ω = ω′. Let ϕ ∈ M . The operator V has, in particular, the properties 2.12-2.15 on Oω+ϕ so
that V , when restricted on Oω+ϕ, equals with zTω+ϕ for some z ∈ T. But since V ω = ω′ = zTω+ϕω = zω′,
one has that for any ϕ ∈ M , V |Oω+ϕ = Tω+ϕ, that is, V ϕ = Sϕ on M . Therefore, V equals with U on
M , showing that V = U whenever M 6= {0}. In other words, U is unique modulo a phase factor and the
unitary or the antiunitary nature of U is completely determined by p ∈ Aut (P) (apart from the trivial
case of H being one-dimensional). Moreover, the operator U does not depend on the choice of the vector
ω. This ends the proof of the theorem. ut

The following result is an immediate corollary to the Wigner theorem.

Corollary 1. For any p ∈ Aut (P) there is a unique σp ∈ Σ such that p = pσp . The function Aut (P) 3
p 7→ σp ∈ Σ is an injective group homomorphism.

As another application of the Wigner theorem one gets from Lemma 5 the following:

Corollary 2. Assume that dim(H) ≥ 2. For any e ∈ Auto(E) there is a unique σe ∈ Σ such that e = eσe .

2.3 The group isomorphisms

2.3.1 Isomorphisms

In this section we collect the results obtained in the previous sections on the relations between the various
automorphism groups of quantum mechanics. This will allow us to prove, apart from the particular cases
of one and two dimensional Hilbert spaces, that all these groups are isomorphic.

Consider the following diagrams
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dim(H) ≥ 1 dim(H) ≥ 1 dim(H) ≥ 2

Aut (D) Aut (S) 4←− Auts(E) Auto(E)xy
y1

x3

xy
Aut0(P) Aut (P) 2−→ Σ Σ

The double arrow in the first diagram is the isomorphism of Proposition 7, while the arrows 1 to 4 in
the second diagram are injective homomorphism given by Proposition 1, Corollary 1, Proposition 9 and
Proposition 4, respectively. Proposition 9 and Corollary 2 give the double arrow in the third diagram.
We show that the map obtained by composing the arrows in the second diagram is the identity. From
this it follows that the involved maps are isomorphisms.

Let G denote any of the four groups appearing in the second diagram. Starting from G and composing
the injective group homomorphisms one obtains an injective group homomorphism φG of G into G.

Corollary 3. The map φG is the identity on G.

Proof. It is sufficient to prove the statement for a particular choice of G. Choosing, for instance, G =
Aut (S), we then have

φAut (S) : s 7→ ps 7→ σps 7→ eσps
7→ seσps

,

where we use the notations ps := s|P and eσ := gσ|E. Its is immediate to check that φAut (S)(s) = s. ut

Now suppose that the dimension of the Hilbert space is at least three and consider the following diagram.

Auts(P) 6−→ Aut0(P) −→ Aut (D)x5

y7

Σ ←− Aut (P) ←− Aut (S)

Here the new arrows 5, 6 and 7 are given respectively by Proposition 9, the natural immersion Auts(P) ↪→
Aut0(P), which is obviously an injective group homomorphism, and by Proposition 8.

As in Corollary 3, one can prove that the loop contained in the previous diagram is in fact an identity.
Hence we conclude that, if dimH ≥ 3, all the groups considered are isomorphic. We summarize this fact
in the following corollary.

Corollary 4. If dim (H) ≥ 3, the groups Σ, Aut (S), Auts(P), Aut (P), Aut0(P), Auts(E), Autc(E),
Auto(E) and Aut (D) are isomorphic.

Remark 3. As pointed out in Remark 2, if dim (H) ≥ 3, then the structure of bijective maps e : E → E
which preserve both the order and the coexistence of effects can also be determined and they are of the
form e = eU , U ∈ Aut (H), [31]. The list of Corollary 4 could thus be extended still with another group
of automorphisms.

2.3.2 Homeomorphisms

We proceed to show that the isomorphisms of the previous section are homeomorphisms when the groups
are equipped with their natural topologies induced by the duality (T, E) 7→ tr

[
TE

]
. Let X denote one

of the sets S, P, E, or D, and let G(X) stand for any of the group of automorphisms of X considered
so far, endowed with its natural topology. According to the restrictions on the dimension of H imposed
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by Corollary 4 we can suppose that the dimension of H is greater than 2. Hence, in each case the group
G(X) is isomorphic to Σ and for any x ∈ G(X) there is a unique σx ∈ Σ such that x = xσx

, with
xσx = gσx |X. Thus for any U ∈ σx, x = xU , that is,

x(A) = xU (A) = UAU∗, A ∈ X.

Proposition 10. The map jX : Σ → G(X), σ 7→ xσ, is a group homeomorphism, and G(X) is a second
countable, metrisable, topological group.

Proof. The group Σ is second countable, metrisable, topological group (see Appendix A.2) and the map
jX is bijective so that it remains to be shown that it is a homeomorphism. We demonstrate first that
the function JX : U ∪U → G(X), U 7→ JX(U) := xU is continuous. Since U ∪U is second countable,
it suffice to show that if (Un)n≥1 is a (strongly) convergent sequence in U ∪ U, then (JX(Un))n≥1 is
convergent in G(X). As U 7→ U−1 is continuous in U ∪U, we have, for instance for X = S,

lim
n→∞

fT,E(JS(Un)) = lim
n→∞

tr
[
JS(Un)(T )E

]

= lim
n→∞

tr
[
UnTU−1

n E
]

= tr
[
UTU−1E

]
= fT,E(JS(U)),

for all E ∈ E, T ∈ S, which shows the continuity of JS. The other cases are shown as well. By definition of
quotient topology, this proves also that jX is continuous. It remains to be shown that the inverse mapping
j−1
X is continuous. Consider the group G(X) and let (ϕi)i≥1 be a dense sequence of unit vectors inH. Since

P is contained in X, then the sequence of functions
(
fP [ϕi],P [ϕj ]

)
i,j≥1

gives G(X) a metrisable topology,

which a priori is weaker than the one defined above for G(X). We shall show that j−1
X is continuous in

this weaker topology. It suffices again to consider only sequences. Let (xn) be a convergent sequence in
G(X), with xn → x. We will show that j−1

X (xn) → j−1
X (x) in Σ. To proceed assume on the contrary that

j−1
X is not continuous so that there is an open set O ⊂ Σ such that j−1

X (x) ∈ O but j−1
X (xnk

) /∈ O for a
subsequence (xnk

) of (xn). Let Uk, U ∈ U ∪U such that jX([Uk]) = xnk
and jX([U ]) = x. The sequence

(Uk) is bounded, so that it has a weakly convergent subsequence (Ukh
) in U∪U, with Ukh

→ V . But then
tr

[
P [ϕi]xnkh

(P [ϕj ])
]

= |〈ϕi, Unkh
ϕj〉|2 → |〈ϕi, V ϕj〉|2 and tr

[
P [ϕi]xnkh

(P [ϕj ])
] → tr

[
P [ϕi]x(P [ϕj ])

]
=

|〈ϕi, Uϕj〉|2, which shows that [V ] = [U ]. Since Unkh
→ V also strongly we thus have [Unkh

] → [V ] = [U ]
which is a contradiction. This shows that j−1

X : G(X) → Σ is continuous. This ends the proof. ut

2.3.3 The automorphism group of quantum mechanics

On the basis of Corollary 4 and Proposition 10 all the groups considered so far are isomorphic and
homeomorphic with each other in a natural way, with the dimension requirement dim(H) ≥ 2 for the
group Auto(E), and dim(H) ≥ 3 for the groups Aut (D), Aut0(P), and Auts(P). Any of these groups
may thus be called the automorphism group of quantum mechanics. The implementation of the structure
preserving transformations in terms of unitary or antiunitary operators is, however, most directly obtained
from the group Σ in terms of a section s : Σ → U ∪U for the canonical projection π : U ∪U → Σ.
Therefore, from now on we shall refer to the group Σ as the automorphism group of quantum mechanics.
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3

The Symmetry Actions and their Representations

This chapter is devoted to the study of the homomorphisms

G 3 g 7→ σg ∈ Σ,

where G is a connected Lie group and Σ the symmetry group of quantum mechanics. We call such a
homomorphism symmetry action leaving the word ”representation” for a more specific use of representing
a group in terms of unitary or antiunitary operators on the underlying Hilbert space. It is the notion of
symmetry action which formalizes the idea that a group G is a symmetry group of a quantum system
described by a Hilbert space H. The assumption that G is a Lie group is satisfied by most groups of
physical relevance, like the Euclidean group, the Galilei group, or the Poincaré group. The assumption
on the connectedness of G implies that we consider only continuous symmetries. These mathematical
assumptions are very crucial in determining the symmetry actions of a group.

We will show that there is a natural connection between symmetry actions of a group G and represen-
tations of another group G, the universal central extension of G, and it is this connection which is of
primary importance in the physical applications.

The material of this Chapter is organized in the following way. Section 3.1 introduces the basic definitions
concerning the symmetry actions of a Lie group. These definitions do not depend on the Lie structure of
the group. Section 3.2 collects some technical results on the multipliers of a connected simply connected
Lie group. Section 3.3 reviews the construction of the universal central extension for a connected Lie group
and presents the fundamental connection between the symmetry actions of such a group and the unitary
representations of its universal central extension. In Section 3.4 the Mackey Machine of Appendix A.3
will be applied to construct these representations for the case where the universal central extension of
the symmetry group is a regular semidirect product. Temporal evolution of a closed system will offer the
first elementary example of the application of the general theory (Section 3.5).

3.1 Symmetry actions of a Lie group

Let G be a topological group and H a complex separable Hilbert space. The following definition translates
in a mathematically precise language the physical requirement that G is a group of symmetries for a
quantum system represented by the Hilbert space H.

Definition 8. A function G 3 g 7→ σg ∈ Σ is a symmetry action of G on H if it is a continuous group
homomorphism, that is, a continuous function having the properties σe = [I] and σg1g2 = σg1σg2 for all
g1, g2 ∈ G.

According to Proposition 12 and the von Neumann theorem (Lemma 13, A.1), the continuity of a symme-
try action σ : G → Σ is already implied by its measurability. This is a useful result since the measurability
of σ is often simpler to verify than its continuity.



Let G be a group and consider the problem of describing all the quantum systems which have G as
a group of symmetries. To solve this problem in an appropriate way one must take into account the
fact that physics does not fix in a unique way the Hilbert space associated with a quantum system.
Therefore, let H and H′ be two Hilbert spaces and define Σ(H,H′) as the set of equivalence classes of
unitary or antiunitary operators B : H → H′ with respect to the following relation: B1 is equivalent to
B2 if there is a z ∈ T such that B1 = zB2. Let [B] := {zB | z ∈ T} denote the equivalence class of B
and extend the operator product to these classes such that if [B1] ∈ Σ(H,H′) and [B2] ∈ Σ(H′,H′′),
then [B1][B2] := [B1B2] ∈ Σ(H,H′′). Clearly, each element of β ∈ Σ(H,H′) allows one to describe the
quantum system associated with H in terms of the mathematical objects defined on H′ in such a way that
the probabilistic structure of the theory is completely preserved. In particular, any such β ∈ Σ(H,H′)
establishes a one-to-one correspondence between the symmetry groups Σ(H) and Σ(H′) through the
mapping

Σ(H) 3 σ 7→ βσβ−1 ∈ Σ(H′).
In view of the above considerations the following definition is natural.

Definition 9. Two symmetry actions σ : G → Σ(H) and σ′ : G → Σ(H′) of a group G on the Hilbert
spaces H and H′, respectively, are equivalent if there is a β ∈ Σ(H,H′) such that βσg = σ′gβ for all g ∈ G.

Different physical systems which behave in the same way under the action of a group G are thus charac-
terized by the property that the corresponding symmetry actions are equivalent.

We say that a physical system is elementary with respect to the symmetry action σ : G → Σ if for any
vector state P ∈ P the set {σg(P ) | g ∈ G} of vector states is complete in the sense of superpositions,
that is, any other vector state P1 ∈ P can be expressed as a superposition of some of the vector states
σg(P ), g ∈ G, compare with discussion at beginning of Chapter 1.1. We take this notion of elementary
system as the definition of the irreducibility of a symmetry action. The mathematical correctness of this
definition becomes clear in Theorem 3.

Definition 10. A symmetry action σ : G → Σ is irreducible if for any P1, P2 ∈ P there is a g ∈ G such
that tr

[
P1σg(P2)

] 6= 0.

The classification of the possible elementary quantum systems having G as the symmetry group is traced
back to the mathematical problem of finding all the irreducible symmetry actions of G, up to an equiv-
alence. To this aim an essential step is to study the connection between the symmetry actions and the
unitary / antiunitary representations.

From now on we assume that G is a connected Lie group. Since Σ0 := U/T is the connected component
of the identity of Σ and the map g 7→ σg is continuous, then, for all g ∈ G, σg ∈ Σ0, that is, all the
symmetries σg are induced by unitary operators.

Let U : G → U be a unitary representation of G and let π : U → Σ0 be the canonical projection. Then
the map

G 3 g 7→ σg := π(Ug) ∈ Σ0

is a symmetry action of G on H. Furthermore, if U and U ′ are unitarily equivalent unitary representations
of G in H and H′, respectively, the symmetry actions G 3 g 7→ π(Ug) ∈ Σ0(H) and G 3 g 7→ π(U ′

g) ∈
Σ0(H′) are equivalent, as well. Moreover, if g 7→ Ug is an irreducible representation, then also g 7→ π(Ug)
is irreducible.

The unitary representations of G are not enough to describe all the symmetry actions of G, and there are
unitarily inequivalent representations of G such that the corresponding symmetry actions are equivalent.
Indeed, let σ : G → Σ0 be a symmetry action and s : Σ0 → U a measurable section for the canonical
projection π : U → Σ0, that is, a measurable functions such that π(s(σ)) = σ for all σ ∈ Σ0. Then the
function

G 3 g 7→ Ug := s(σg) ∈ U

is measurable, Ue = I, but, instead of Ug1g2 = Ug1Ug2 , one only gets the weaker condition
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Ug1g2 = z(g1, g2)Ug1Ug2 , (3.1)

with z(g1, g2) ∈ T. The fact that σ is a group homomorphism implies that

z(g1g2, g3)z(g1, g2) = z(g1, g2g3)z(g2, g3) (3.2)
z(g, e) = z(e, g) = 1. (3.3)

The map (g1, g2) 7→ z(g1, g2) satisfying Eqs (3.2) and (3.3) is called a T-multiplier and the map g 7→ Ug

satisfying Eq. (3.1) is known as a projective representations of G, with the multiplier z. Moreover, if σ′

is another symmetry action equivalent to σ and acting in H′, then, by definition, there is a unitary or
antiunitary operator B from H onto H′ and a measurable function G → T such that

U ′
g = b(g)BUgB

−1 g ∈ G,

where U ′
g := s(σ′g). Conversely, given a projective representation g 7→ Ug of G, then g 7→ π(Ug) is a

symmetry action of G. Moreover, if g 7→ U ′
g is another projective representation of G such that there is

a unitary or antiunitary operator B from H onto H′ and a measurable function b : G → T such that
U ′

g = b(g)BUgB
−1 for all g ∈ G, then the symmetry actions g 7→ π(Ug) and g 7→ π(U ′

g) are equivalent.

The problem of determining the symmetry actions of G is reduced to the study of the projective repre-
sentations of G and of finding a suitable notion of equivalence that generalizes the unitary equivalence
of representations. In order to apply the powerful theory of (ordinary) representations one needs to take
a second step. This consists of defining a group G such that its irreducible unitary representations are
in one to one correspondence with the irreducible projective representations of G. Such a group G will
be constructed in Section 3.3 and it will be called the universal central extension of G. Its construction
depends heavily on the structure of the set of the T-multipliers of G.

The determination of the T-multipliers of a Lie group is, in general, a highly difficult nonlinear problem.
However, the classification of the T-multipliers of a connected, simply connected Lie group can be reduced
to a finite-dimensional linear problem on the Lie algebra of the group.

In many physical applications the group G is not simply connected. To bypass this difficulty, one can
consider the universal covering group G∗ of G. By definition, it is simply connected. However, in general,
the set of the T-multipliers of G may be quite different from the set of the T-multipliers of G∗. For
example, the Poincaré group has (essentially) two multipliers (corresponding to the bosonic and the
fermionic particles, respectively), whereas its universal covering group has only the trivial multiplier.

Despite of this fact, it will be shown in the following sections that the study of the T-multipliers of G∗ is
sufficient to classify all the symmetry actions of G, also when G is not simply connected. This remarkable
mathematical fact has created some confusion in the physical literature, where, sometimes, instead of the
natural symmetry group G its covering group G∗ is considered as the true group of physical symmetries.

Remark 4. The common way to solve the problem of passing from projective representations to (ordinary)
representations starts with classifying the T-multipliers of G. Each multiplier z is then used to define a
group Gz, the central extension of G by T. Finally, one classifies all the irreducible representations of Gz

(see, for example, [36]).

3.2 Multipliers for Lie groups

This section gives a brief summary of the part of the theory of multipliers which is needed to describe the
multipliers for a simply connected Lie group. The proofs of the quoted results can be read, for instance,
from Chapter 7 of [36] where a systematic study of the multipliers is presented.

Let H be a connected and A a commutative Lie group, and let e and 1 be their respective unit elements.

Definition 11. An A-multiplier of H is a measurable map τ : H ×H → A for which
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τ(e, g) = τ(g, e) = 1, g ∈ H,

τ(g1, g2g3)τ(g2, g3) = τ(g1, g2)τ(g1g2, g3), g1, g2, g3 ∈ H.

Two A-multipliers τ1 and τ2 of H are equivalent if there is a measurable map b : H → A such that

τ2(g1, g2) =
b(g1g2)

b(g1)b(g2)
τ1(g1, g2), g1, g2 ∈ H.

An A-multiplier τ is exact if it is equivalent to the constant multiplier 1, that is,

τ(g1, g2) =
b(g1g2)

b(g1)b(g2)
, g1, g2 ∈ H,

for some measurable map b from H to A.

The set of A-multipliers is a commutative group under the pointwise multiplication and the set of exact
A-multipliers is a subgroup of it. We let H2(H, A) denote the corresponding quotient group.

The introduction of the above notion of equivalence of multipliers is motivated by the following observa-
tion. Let G be a group of symmetries and assume that it is a connected Lie group. Let σ : G → Σ0 be a
symmetry action of G. Given a measurable section s : Σ0 → U for the canonical projection π : U → Σ0,
define, for all g, g1, g2 ∈ G,

Ug = s(σg)
z(g1, g2)I = Ug1g2U

−1
g2

Ug1 .

Then z is a T-multiplier of G and U is a projective representation with z as its multiplier (compare with
Eq. (3.1)). If s′ is another measurable section for π and z′ is the multiplier of the projective representation
g 7→ s′(σg), then z and z′ are equivalent T-multipliers. Moreover, if τ is a T-multiplier of G, there always
exist a projective representation U of G having τ as its multiplier, see [36]. If τ ′ is another multiplier
equivalent to τ , there is a projective representation having τ ′ as its multiplier and which induces the
same symmetry action than U does.

The above observations imply that in order to classify all the symmetry actions of a group G it suffices
to study the quotient group H2(G,T) instead of the group of the T-multipliers of G.

From now on we assume that the generic Lie group H is simply connected.

The following lemma, see Corollary 7.32 of [36], reduces the study of the T-multipliers of H to the study
of its R-multipliers.

Lemma 6. Each T-multiplier of H is equivalent to one of the form eiτ , where τ is an R-multiplier of H.
The multiplier τ is exact if and only if the multiplier eiτ is exact.

In general, multipliers are measurable functions. However, in the case of the real valued multipliers one
may restrict to study only analytic multipliers. This is due to the following result, see Corollary 7.30 of
[36].

Lemma 7. Any Rn-multiplier of H is equivalent to an analytic one.

The above two lemmas imply that each T-multiplier is equivalent to a multiplier eiτ , where τ is an
analytic R-multiplier. Moreover, since τ is analytic and H is simply connected, the multipliers may be
studied from an infinitesimal point of view. To do this, we need the following definition. In that Lie (H)
denotes the Lie algebra of H and (X,Y ) 7→ [X, Y ] is its Lie product.

Definition 12. A bilinear skew symmetric map F : Lie (H)× Lie (H) → Rn for which

F (X, [Y,Z]) + F (Z, [X, Y ]) + F (Y, [Z, X]) = 0, X, Y, Z ∈ Lie (H),

is a closed Rn-form. A closed Rn-form F is exact if there is a linear map q : Lie (H) → Rn such that

F (X, Y ) = q([X, Y ]), X, Y ∈ Lie (H).
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The set of closed Rn-forms is a finite dimensional real vector space and the set of exact Rn-forms is a
subspace of it. Let H2(Lie (H),Rn) denote the corresponding quotient space.

The above definition is motivated by the following result, which is essential in order to define the universal
central extension of a connected Lie group. Observe that the set of Rn-multipliers is a real vector space
under the pointwise operations and the set of exact Rn-multipliers is a subspace of it, so that the group
H2(H,Rn) is also a vector space.

Theorem 2. The vector spaces H2(H,Rn) and H2(Lie (H),Rn) are isomorphic in a canonical way.

Proof. To exhibit the claimed isomorphism, let F be a closed Rn-form and denote by Rn ⊕F Lie (H) the
Lie algebra defined by the following Lie bracket

[
(v1, X1), (v2, X2)

]
:= (F (X1, X2),

[
X1, X2

]
),

for all v1, v2 ∈ Rn and X1, X2 ∈ Lie (H). Let α : Rn → Rn ⊕F Lie (H) be the natural injection and β :
Rn⊕F Lie (H) → Lie (H) the natural projection. These maps are Lie algebra homomorphisms and Ker β =
Im α. Due to Theorems 6 and 7 of Appendix A.1, there exist a unique (up to an isomorphism) connected,
simply connected Lie group HF , such that Lie (HF ) = Rn ⊕F Lie (H), and two group homomorphisms
a : Rn → HF , b : HF → H such that the induced Lie algebra homomorphisms ȧ and ḃ equal with α and
β respectively. Moreover, one can prove that a is a homeomorphism from Rn onto a(Rn) and HF /a(Rn)
is isomorphic to H. By a known result (see, for example, lemma 7.26 of [36]) there exists an analytic map
c from H to HF such that c(e) = e and b(c(h)) = h for all h ∈ H. If we define

τF (h1, h2) := c(h1)c(h2)c(h1h2)−1, h1, h2 ∈ H,

then τF is (modulo identification) an analytic Rn-multiplier and the function [F ] → [τF ] is the isomor-
phism in question. Since τF is analytic, one can easily check that HF is isomorphic, as a Lie group, to
Rn ×τF

H, which is a Lie group with respect to the product

(v1, g1)(v2, g2) = (v1 + v2 + τF (g1, g2), g1g2), v1, v2 ∈ Rn, g1, g2 ∈ H. ut

3.3 Universal central extension of a connected Lie group

Let G be a connected Lie group, G∗ its universal covering group and δ : G∗ → G the covering ho-
momorphism. The kernel of δ, Ker δ = {g∗ ∈ G | δ(g∗) = e}, is a closed, discrete, central subgroup of
G∗.

Let H2(G∗,R) be the vector space of the equivalence classes of the R-multipliers of G∗. By Theorem 2 it
is finite dimensional. Let H2(G∗,R)δ be the subset of the equivalence classes [τ ] ∈ H2(G∗,R) such that

τ(k, g∗) = τ(g∗, k), k ∈ Ker δ, g∗ ∈ G∗. (3.4)

Since Ker δ is central in G∗ this relation holds for all R-multipliers of G∗ which are equivalent to τ .
Hence the set H2(G∗,R)δ is well defined. Moreover, H2(G∗,R)δ is a subspace of H2(G∗,R). Let N be its
dimension.

Let τ1, . . . , τN be some fixed analytic R-multipliers of G∗ such that their equivalence classes [τ1], . . . , [τN ]
form a basis of H2(G∗,R)δ. The function τ : G∗ ×G∗ → RN , defined as

τ(g∗1 , g∗2)i := τi(g∗1 , g∗2), g∗1 , g∗2 ∈ G∗, i = 1, . . . , N,

is an analytic RN -multiplier of G∗. The restriction of τ to Ker δ×Ker δ is an RN -multiplier of the discrete
group Ker δ, hence it is exact (see Proposition 2, Sec. 4, ch.1 of [6]). Without loss of generality one may
thus assume that τ is analytic and

τ(k1, k2) = 0, k1, k2 ∈ Ker δ. (3.5)
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Definition 13. Let G = RN × G∗ be the product manifold. Since τ is analytic, G is a Lie group with
respect to the product

(v1, g
∗
1)(v2, g

∗
2) = (v1 + v2 + τ(g∗1 , g∗2), g∗1g∗2), v1, v2 ∈ Rn, g∗1 , g∗2 ∈ G∗.

G is the universal central extension of G.

The following observation explains why G is called a central extension of G. Define the map ρ from G to
G as

ρ(v, g∗) := δ(g∗), v ∈ RN , g∗ ∈ G∗.

Clearly, ρ is an analytic surjective group homomorphism and its kernel

K = {(v, k) ∈ G | v ∈ RN , k ∈ Ker δ}

is a closed subgroup of G. By definition, τ(k, g∗) = τ(g∗, k) for all k ∈ Ker δ and g∗ ∈ G∗, so that K is
central in G. Hence, G is a kind of a generalization of the universal covering group. Moreover, Eq (3.5)
implies that K, as a Lie group, is the direct product of RN and Ker δ, that is, K = RN ×Ker δ.

The next two definitions are essential in order to describe properly the relation between the symmetry
actions of G and the unitary representations of G. We recall the notation T = {zI | z ∈ T}

Definition 14. A representation U : G → U is admissible if it satisfies the condition

Uh ∈ T for all h ∈ K. (3.6)

Let U be an admissible representation. Its restriction to K is a character of K. Since K = RN ×Ker δ,
this character is of the form U(v,k) = eiw·vε(k)I, v ∈ RN , k ∈ Ker δ, for some w ∈ RN and for some
character ε of Ker δ. We call w the algebraic charge of U and ε its topological charge. The motivation for
these names derives from the fact that Ker δ depends only on the topological structure of G whereas the
dimension N is connected with the structure of H2(Lie (G),R).

Every irreducible representation of G is admissible. Indeed, let U be an irreducible representation. Since
K is central, Uk, k ∈ K, commutes with each Ug, g ∈ G, so that, by Schur’s lemma, Uk is a multiple of
the identity. Since Uk is unitary, it is a phase factor, that is, Uk ∈ T.

Definition 15. Let U and U ′ be two unitary representations of G acting respectively in H and H′. We
say that U and U ′ are physically equivalent if there exist a unitary or antiunitary operator B : H → H′
and a map b : G → T such that

BUg = b(g)U ′
gB, g ∈ G. (3.7)

If U and U ′ are unitarily equivalent, then they are also physically equivalent, but the converse implication
is not true. Moreover, if U is an admissible representation, then every representation which is physically
equivalent to U is admissible, too.

The following lemma shows that the map b in Eq. (3.7) is, in fact, a character of G∗.

Lemma 8. Let U and U ′ be two unitary representations of G. The representations U and U ′ are physically
equivalent if and only if there is a character χ of G∗ and a unitary or antiunitary operator B such that
Eq. (3.7) holds with

b(v, g∗) = χ(g∗) v ∈ RN , g∗ ∈ G∗.

Proof. Assume that U and U ′ are physically equivalent and let b and B be such that Eq. (3.7) holds.
Then, for all g ∈ G

b(g)I = BUgB
−1U ′−1

g .
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Fix a unit vector ϕ ∈ H′. Then b(g) = 〈U−1
g B−1ϕ,B−1U ′−1

g ϕ〉. Since U and U ′ are continuous in the
strong operator topology, the function b is continuous, too. Moreover, for all g1, g2 ∈ G

BUg1g2
= b(g1g2)U

′
g1g2

B

BUg1
Ug2

= b(g1g2)U
′
g1

U ′
g2

B

b(g1)b(g2)U
′
g1

U ′
g2

B = b(g1g2)U
′
g1

U ′
g2

B.

Thus b(g1)b(g2) = b(g1g2). Obviously, b(e) = 1, so that b is a character of G. The restriction of b to RN

is thus of the form b(v, e∗) = eiw·v, v ∈ RN , for some w ∈ RN . Then, if g∗1 , g∗2 ∈ G∗,

b((0, g∗1))b((0, g∗2)) = b((τ(g∗1 , g∗2), e∗))b((0, g∗1g∗2))
= eiw·τ(g∗1 ,g∗2 )b((0, g∗1g∗2)).

Hence, by Lemma 6, the R-multiplier w · τ is exact, so that w = 0. If χ is the restriction of b to G∗,
then for all v ∈ RN and g ∈ G, b(v, g∗) = χ(g∗) and χ is a character of G∗. The converse implication is
evident. ut

We are now prepared state the main result of this section. Let U be an admissible representation of G
and define, for all g ∈ G,

σU
g := π(Ug), (3.8)

where g = (v, g∗) ∈ G is such that ρ(g) = δ(g∗) = g. The following theorem is then obtained.

Theorem 3. With the above notations, σU is a symmetry action of G and the correspondence [U ] 7→ [σU ]
between the physical equivalence classes of admissible unitary representations of G and the equivalence
classes of the symmetry actions of G is a bijection. The representation U of G is irreducible if and only
if σU is an irreducible symmetry action of G.

Before proving the theorem some comments are due. The above result shows that the equivalence classes
of admissible representations of G classify quantum systems which are different from each other with
respect to the symmetry group G. In particular, the irreducible representations of G, which are always
admissible, describe all the possible systems which are elementary with respect to G.

Consider next the case of a reducible representation of G. For sake of simplicity, assume that U = U1⊕U2

where U1 and U2 are irreducible representations, so that the representations Ui are admissible. Let wi and
εi denote the corresponding algebraic and topological charges. In general, U is not admissible. A simple
calculation shows that U is admissible if and only if w1 = w2 and ε1 = ε2. Thus vector states associated
with different elementary systems can be superposed into new vector states only if the elementary systems
have the same algebraic and topological charges. This fact is at the root of the existence of superselection
rules for non-elementary systems.

The relation between the decomposition into irreducible representations and the notion of physical equiv-
alence requires also some special care. One can easily show that, if b is a nontrivial character of G which is
1 on K, then, bU2 is an irreducible representation physically equivalent to U2. Nevertheless, U1⊕U2 and
U1 ⊕ bU2 are physically inequivalent admissible representations. In the same way, if the algebraic charge
w of U1 and U2 is zero and their topological charge ε is such that ε2 extends to a character b of G, then
U1 ⊕U2 and U1 ⊕ bBU2B

−1, where B is any antiunitary operator, are physically inequivalent admissible
representations, even though U2 and bBU2B

−1 are physically equivalent. This kind of phenomenon does
not occur if one considers the unitary equivalence instead of the physical equivalence.

We come back to the proof of Theorem 3, which requires some technical lemmas.

We start with stating some properties of G.

Lemma 9. Let G be the universal central extension of G.

1. There is a measurable map c : G → G such that c(e) = (0, e∗) = e and ρ(c(g)) = g for all g ∈ G. (We
call such a map a section for ρ).
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2. Given a section c for ρ, define the map Γc : G×G → K as

Γc(g1, g2) := c(g1)c(g2)c(g1g2)−1, g1, g2 ∈ G.

Then Γc is a K-multiplier of G and its equivalence class does not depend on the choice of the section
c.

3. Considering RN as a subgroup of K = RN×Kerδ, then the K-multiplier Γc◦(δ×δ) of G∗ is equivalent
to τ .

4. Let χ be a character of K. With the above notations, the map µχ : G×G → T defined as

µχ(g1, g2) := χ (Γc(g1, g2)) , g1, g2 ∈ G,

is a T-multiplier of G and its equivalence class [µχ] does not depend on the choice of the section c.

Proof.

1. Since ρ is a surjective group homomorphism whose kernel is K and ρ is analytic, G is isomorphic,
as a Lie group, to the quotient G/K. The existence of a section is thus a standard result (see, for
example, Theorem 5.11 of [36]).

2. If g1, g2 ∈ G, then ρ(Γc(g1, g2)) = e, so that Γc(g1, g2) ∈ K. By direct computation one checks that
Γc is a K-multiplier. Let c′ be another section for ρ, then, for all g ∈ G, c(g) = b(g)c′(g) for some
measurable function b from G to K. Hence, for all g1, g2 ∈ G

Γc′(g1, g2) =
b(g1g2)

b(g1)b(g2)
Γc(g1, g2).

3. Let i : G∗ → G be the natural immersion and a the measurable map from G∗ to G defined as

a(g∗) := c(δ(g∗))i(g∗)−1, g∗ ∈ G∗.

Since ρ(a(g∗)) = e, the map a takes values in K. Then, if g∗1 , g∗2 ∈ G∗,

Γc(δ(g∗1), δ(g∗2)) = c(δ(g∗1))c(δ(g∗1))c(δ(g∗1)δ(g∗2))−1

= a(g∗1)i(g∗1)a(g∗2)i(g∗2)i(g∗1g∗2)−1a(g∗1g∗2)−1

= a(g∗1)a(g∗2)a(g∗1g∗2)−1i(g∗1)i(g∗2)i(g∗1g∗2)−1

= a(g∗1)a(g∗2)a(g∗1g∗2)−1(τ(g∗1 , g∗2), e∗),

i.e., Γc ◦ (δ × δ) is equivalent to τ .

4. It is a simple consequence of the properties of Γc given in the item 2. ut

The following lemma describes the group H2(G,T) in terms of the characters of K and G∗. This result
is important in itself.

Let K̂ be the dual group of K and V the subgroup of those characters of K which extend to characters
of G. By the Lemma 8 the elements of V can be identified with characters of G∗.

Lemma 10. The mapping K̂ 3 χ 7→ [µχ] ∈ H2(G,T) is a surjective homomorphism whose kernel is V .

Proof. By direct computation one can check that χ 7→ [µχ] is a group homomorphism. To show its
surjectivity, we notice that, since the equivalence class [µχ] does not depend on the specific form of the
section c, we can choose for c the particularly simple form

c(g) = (0, c̃(g)) g ∈ G,
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where c̃ : G → G∗ is measurable and satisfies c̃(e) = e∗ and δ(c̃(g)) = g for all g ∈ G. With this choice a
straightforward calculation shows that

Γc(g1, g2) = ( τ(c̃(g1), c̃(g2))− τ(γ(g1, g2), c̃(g1g2)) , γ(g1, g2) ) , (3.9)

where g1, g2 ∈ G and γ(g1, g2) = c̃(g1)c̃(g2)c̃(g1g2)−1 ∈ Ker δ. Let now µ be a T-multiplier of G and µ∗

the T-multiplier of G∗

µ∗(g∗1 , g∗2) = µ(δ(g∗1), δ(g∗2)), g∗1 , g∗2 ∈ G∗.

According to Lemma 6,

µ∗(g∗1 , g∗2) =
a(g∗1g∗2)

a(g∗1)a(g∗2)
eiτ(g∗1 ,g∗2 ), g∗1 , g∗2 ∈ G∗, (3.10)

for some analytic R-multiplier τ of G∗ and a measurable function a : G∗ → T. We claim that

τ(k, g∗) = τ(g∗, k) k ∈ Ker δ, g∗ ∈ G∗. (3.11)

In fact, let k ∈ Ker δ and g∗ ∈ G∗. Since µ∗(k, g∗) = µ∗(g∗, k) = 1, then

eiτ(k,g∗) =
a(k)a(g∗)
a(kg∗)

=
a(k)a(g∗)
a(g∗k)

= eiτ(g∗,k).

Hence τ(k, g∗) = τ(g∗, k) + 2πn(k, g∗) where n(k, g∗) is an integer. By continuity of τ(k, ·) and since G∗

is connected, the map n(·, ·) depends only on k, and, choosing g∗ = k, we conclude that n(k, g∗) = 0 for
all k ∈ Ker δ, g∗ ∈ G∗.

Due to (3.11), the equivalence class of τ belongs to H2(G∗,R)δ and, by definition of τ , there is a w ∈ RN

such that, up to equivalence, τ = w · τ . Hence (3.10) becomes

µ∗(g∗1 , g∗2) =
a(g∗1g∗2)

a(g∗1)a(g∗2)
eiw·τ(g∗1 ,g∗2 ), g∗1 , g∗2 ∈ G∗. (3.12)

The previous equality implies that the map χ : K → T, with χ(v, k) := eiw·va(k), v ∈ RN , k ∈ Ker δ, is,
in fact, a character of K. Hence, by the statement 4 of Lemma 9, χ defines a T-multiplier µχ of G.

We will show that µχ is equivalent to µ. In fact, using equation (3.9), one has

µχ(g1, g2) = χ(Γc(g1, g2))

= eiw·( τ(c̃(g1),c̃(g2))−τ(γ(g1,g2),c̃(g1g2)) )a(γ(g1, g2)).

Using twice equation (3.12) we obtain

eiw·τ(c̃(g1),c̃(g2)) =
a(c̃(g1))a(c̃(g2))
a(c̃(g1)c̃(g2))

µ(g1, g2)

e−iw·τ(γ(g1,g2),c̃(g1g2)) =
a(c̃(g1)c̃(g2))

a(γ(g1, g2))a(c̃(g1g2))

so that

µχ(g1, g2) =
a(c̃(g1))a(c̃(g2))

a(c̃(g1g2))
µ(g1, g2),

which shows the equivalence of µ and µχ.

Suppose now that χ is a character of K that extends to a character of G (still denoted by χ). Then

µχ(g1, g2) = χ(c(g1)c(g2)c(g1g2)−1)
= χ(c(g1))χ(c(g2))χ(c(g1g2)−1),

showing that µχ is exact. Conversely, assume that

µχ(g1, g2) =
a(g1g2)

a(g1)a(g2)
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for some measurable function a : G → T. Observe that, for all g ∈ G, gc(ρ(g))−1 ∈ K and define
χ′ : G → T as

χ′(g) = χ(hc(ρ(g))−1)a(ρ(g))−1 g ∈ G.

Then χ′ is a character of G. Indeed, χ′ is measurable, and if g1, g2 ∈ G,

χ′(g1)χ
′(g2) =

χ(g1c(ρ(g1))−1g2c(ρ(g2))−1)
a(ρ(g1))a(ρ(g2))

=
χ

(
g1g2c(ρ(g2))−1c(ρ(g1))−1

)
µχ(g1, g2)

a(ρ(g1g2))

=
χ

(
g1g2c(ρ(g2))−1c(ρ(g1))−1c(ρ(g1))c(ρ(g2))c(ρ(g1g2))−1

)

a(ρ(g1g2))
= χ

(
g1g2c(ρ(g1g2))

−1
)
a(ρ(g1g2))

−1

= χ′(g1g2).

Moreover, since a(e) = 1, χ′(k) = χ(k) for all k ∈ K.

Hence, H2(G,T) is isomorphic, as an abstract group, to the quotient group K̂/V and this concludes the
proof. ut

If the subgroup V of K̂ is closed one may give a better description of H2(G,T). Define

K0 := {(v, k) ∈ K | b(k) = 1 for any character b of G∗}.

Then K0 is a commutative closed subgroup of K. Since V is closed, a standard result on commutative
locally compact groups (see, for example, Theorem 4.39 of [15]) shows that K̂/V is isomorphic to the
dual group K̂0 of K0. In particular, any element χ ∈ K̂0 extends to an element χ̂ ∈ K̂ and χ̂ is uniquely
defined by χ, up to an element of V . Let µχ be the T-multiplier of G defined by

µχ(g1, g2) = χ̂(Γc(g1, g2)), g1, g2 ∈ G,

where Γc is defined in Lemma 9. As a consequence of Lemma 10, the equivalence class [µχ] depends only
on χ and not on the particular extension chosen.

Corollary 5. If V is closed, the map K̂0 3 χ 7→ [µχ] ∈ H2(G,T) is a group isomorphism.

We are now ready to prove the main theorem of this section.

Proof (Proof of Theorem 3). In the following we fix a section c : G → G for the function ρ : G → G and
a section s : Σ0 → U for the canonical projection π : U → Σ0. Due to the admissibility condition (3.6),
if h1, h2 ∈ G are such that ρ(h1) = ρ(h2) = g, then π(Uh1) = π(Uh2), showing that σU

g is well-defined. In
particular, we have

σU
g = π(Uc(g)) g ∈ G.

First we show that g 7→ σU
g is a symmetry action of G. Indeed, if g1, g2 ∈ G then

σU
g1

σU
g2

= π(Uc(g1))π(Uc(g2))
= π(Uc(g1)Uc(g2))
= π(Uc(g1)c(g2)c(g1g2)−1)π(Uc(g1g2))

= π(Uc(g1g2)) = σU
g1g2

,

where we used the fact that c(g1)c(g2)c(g1g2)−1 ∈ K as well as the admissibility of U . Since c is measur-
able, σU is measurable, too. Also, σU

e = I, so that σU is a symmetry action of G.

Let U and U ′ be two physically equivalent admissible representations of G acting on H and H′, re-
spectively. The corresponding symmetry actions σU and σU ′ are equivalent too. Indeed, in this case
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BUh = b(h)U ′
hB, h ∈ G, for some unitary or antiunitary operator B : H → H′ and a character b : G → T.

If β denotes the equivalence class [B] ∈ Σ(H,H′), then βσU
g = σU ′

g β for all g ∈ G, which is just to say
that σU and σU ′ are equivalent. This shows that the map [U ] 7→ [σU ] is well-defined.

We now show its surjectivity. Let σ be a symmetry action of G and define µ : G×G → U as

µ(g1, g2) := s(σg1)s(σg2)s(σg1g2)
−1, g1, g2 ∈ G.

Since π(µ(g1, g2)) = I then µ(g1, g2) ∈ T. Moreover, µ is measurable and by a direct computation one
confirms that µ is, in fact, a T-multiplier of G. By Lemma 10, there is a character χ of K and a measurable
function a : G → T such that

µ(g1, g2) =
a(g1g2)

a(g1)a(g2)
µχ(g1, g2) g1, g2 ∈ G. (3.13)

Define a map Uσ : G → U as

Uσ
h := χ(hc(ρ(h))−1)a(ρ(h))s(σρ(h)), h ∈ G.

Then Uσ is a representation of G. Indeed, as a composition of measurable maps Uσ is measurable. Since
a(e) = 1 and s(I) = I, Uσ

(0,e∗) = I. Finally, for any h1, h2 ∈ G,

Uσ
h1

Uσ
h2

=χ(h1c(ρ(h1))−1h2c(ρ(h2))−1)a(ρ(h1))a(ρ(h2))s(σρ(h1))s(σρ(h2))

= χ
(
h1h2c(ρ(h2))−1c(ρ(h1))−1

)

a(ρ(h1))a(ρ(h2))µ(g1, g2)s(σρ(h1h2))

=χ
(
h1h2c(ρ(h2))−1c(ρ(h1))−1

)
χ

(
c(ρ(h1))c(ρ(h2))c(ρ(h1h2))−1

)

a(ρ(h1h2))s(σρ(h1h2))

= χ
(
h1h2c(ρ(h1h2))−1

)
a(ρ(h1h2))s(σρ(h1h2))

= Uσ
h1h2

.

Since π ◦ s = idΣ0 and ρ ◦ c = idG, one readily verifies that σUσ

= σ, proving the surjectivity of the map
[U ] 7→ [σU ].

Assume next that σU and σU ′ are equivalent symmetry actions, and let β ∈ Σ(H,H′) be such that
π(U ′

c(g))β = βπ(Uc(g)), for all g ∈ G. We may thus conclude that for some unitary or antiunitary
operator B ∈ β and for some measurable map b : G → T, U ′

c(g) = b(g)BUc(g)B
−1. Let h ∈ G, g = ρ(h),

and k = hc(g)−1, then k ∈ K and

U ′
h = U ′

kU ′
c(g) = U ′

kb(c(g))BUc(g)B
−1

= U ′
kb(c(g))BUk−1UhB−1 = b̂(h)BUhB−1,

taking into account that, due to (3.6), U ′
k and Uk−1 are phase factors that we have collected in b̂. This

shows that U and U ′ are physically equivalent representations of G, proving the injectivity of the map
[U ] 7→ [σU ].

To conclude, we prove the statement about irreducibility. Given, as above, h = c(g)k ∈ G with g ∈ G
and k ∈ K, and two vectors states P1 = P [φ1] and P2 = P [φ2], with φ1, φ2 ∈ H, one has

|〈φ1, Uhφ2〉|2 = |〈φ1, Uc(g)Ukφ2〉|2
= |Uk〈φ1, Uc(g)Ukφ2〉|2
= tr

[
P1σ

U
g (P2)

]
, (3.14)

where Uk is a phase factor since U is admissible.

We now assume that U is irreducible and we prove that σU is irreducible, too. Let P1 = P [φ1] and
P2 = P [φ2] be two vectors states with φ1, φ2 ∈ H. Due to the irreducibility of U ,
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φ2 ∈ span{Uhφ1 : h ∈ G}
so that there is h ∈ G such that 〈φ1, Uhφ2〉 6= 0. By Eq. (3.14), it follows that tr

[
P1σ

U
g (P2)

] 6= 0, where
g = π(h), that is, σU is irreducible. The converse statement can be proved in a similar way so that
U : G → U is irreducible if and only if σU : G → Σ is irreducible. ut

Let U be an admissible representation of G and w and ε its algebraic and topological charges. One can
easily check that the map G∗ 3 g∗ 7→ U(0,g∗) ∈ U is a projective representation of G∗ with the T-multiplier
µ∗(g∗1 , g∗2) = eiw·τ̄(g∗1 ,g∗2 ). Moreover, if c : G → G is a section for ρ, then the map G 3 g 7→ Uc(g) ∈ U is
a projective representation of G and its T-multiplier is µχ where χ(v, k) = eiw·vε(k) and µχ is defined
in item 4 of Lemma 9. As a consequence of statement 3 of the same lemma, µ∗ and µχ ◦ (δ × δ) are
equivalent. Nevertheless, even if µ∗ is exact, µχ could be non-exact.

3.4 The physical equivalence for semidirect products

According to Theorem 3, the irreducible inequivalent symmetry actions of a group G are completely
described by the irreducible physically inequivalent representations of its universal central extension
G. In the examples to be considered in this monograph, the universal central extension is a regular
semidirect product with commutative normal subgroup, so that any irreducible representation is unitarily
equivalent to some induced one [27]. In this way, the problem of characterizing physically inequivalent
irreducible representations is reduced to the analogous problem for the induced representation. The
present section describes the solution in terms of properties of the orbits in the dual space and of the
inducing representations.

Let G = A×′H be a Lie group with A a commutative normal closed subgroup and H a closed subgroup.
In this section we denote the elements of G as g = (a, h). We denote by Â the dual group of A and by
(g, ·) 7→ g[·] both the inner action of G on A and the dual action of G on Â. If x ∈ Â, let Gx := {g ∈
G | g[x] = x} be the stability subgroup of G at x and G[x] := {g[x] | g ∈ G} the corresponding orbit. We
assume that each orbit in Â is locally closed (i.e. the semidirect product is regular) and, to simplify the
exposition, that it has a G-invariant σ-finite measure.

Moreover, given x ∈ Â and a representation D of Gx ∩ H acting in a Hilbert space K, we denote by
U = IndG

Gx
(xD) the representation of G unitarily induced by the representation xD of Gx,

(xD)ah = xaDh, a ∈ A, h ∈ Gx ∩H.

Explicitly, let ν be a G-invariant σ-finite measure on G[x] and c a measurable map from G[x] to G such
that c(x) = e and c(y)[x] = y for all y ∈ G[x] (we call such a map a section for G[x]). Then U acts on
the Hilbert space L2(G[x], ν,K) as

(Ugf)(y) = (xD)(c(y)−1gc(g−1[y]))f(g−1[y]),

where y ∈ G[x], f ∈ L2(G[x], ν,K), and g ∈ G.

We shall now classify all the equivalence classes (with respect to the notion of physical equivalence) of
irreducible representations of G in the case of regular semidirect products.

Let Âs be the set of singleton G-orbits in Â, i.e.,

Âs = {y ∈ Â : g[y] = y, g ∈ G}.

Define for all x ∈ Â the orbit class

Õx := {yg[xε] : y ∈ Âs, g ∈ G, ε = ±1}.

Obviously, for all x′ ∈ Õx, G[x′] ⊂ Õx and Õx = Õx′ , so that one may choose a family {xi}i∈I of elements
in Â such that Â is the disjoint union of the sets Õxi .
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Theorem 4. Let G = A ×′ H be a regular semidirect product and Â = ∪i∈IÕxi , Õxi ∩ Õxj = ∅, for all
i 6= j.

1. Every irreducible representation of G is physically equivalent to one of the form Ind G
Gxi

(xiD) for

some index i and some irreducible representation D of Gxi ∩H.

2. If i 6= j and D, D′ are two representations of Gxi
∩H and Gxj

∩H, respectively, then Ind G
Gxi

(xiD)

and Ind G
Gxj

(xjD
′) are physically inequivalent.

3. Let x ∈ Â and D, D′ be two representations of Gx ∩ H. Then Ind G
Gx

(xD) and Ind G
Gx

(xD′) are
physically equivalent if and only if one of the following two conditions is satisfied:

a) there exist y ∈ Âs, a character χ of H, and a unitary operator M such that

G[x] = yG[x],
D′

hsh−1 = χsMDsM
−1, s ∈ Gx ∩H,

where h ∈ H is such that x = yh[x];

b) there exist y ∈ Âs, a character χ of H, and an antiunitary operator M such that

G[x] = yG[x]−1,

D′
hsh−1 = χsMDsM

−1, s ∈ Gx ∩H,

where h ∈ H is such that x = yh[x−1].

Motivated by the above theorem, if U is a representation of G physically equivalent to some induced
representation IndG

Gx
(xD) we say, with slight abuse of terminology, that U lives on the orbit class Õx.

The proof of the theorem is based on the following lemma.

Lemma 11. Let x, x′ ∈ Â. Let D be a representation of Gx ∩H acting in K and D′ a representation of
Gx′ ∩H acting in K′. The induced representations Ind G

Gx
(xD) and Ind G

Gx′
(x′D′) are physically equivalent

if and only if there exist an element h ∈ G, a character χ̃ of G and a unitary or antiunitary operator M
from K onto K′ such that

1. Gx′ = hGxh−1;

2. (x′D′)hgh−1 = χ̃gM(xD)gM
−1 for all g ∈ Gx.

Moreover, every character of G is of the form

(a, h) 7→ χ̂aχh a ∈ A, h ∈ H

where χ̂ ∈ Âs and χ is a character of H.

Proof. First we prove the statement on the characters of G. If χ̃ is a character of G, let χ̂ and χ be
its restrictions to A and H, respectively. Then χ is a character of H and, by definition of dual action,
χ̂ ∈ Âs. The proof of the converse implication is similar.

We now turn to the first statement. To simplify the notations, denote U = IndG
Gx

(xD) and U ′ =

IndG
Gx′

(x′D′). The representations U and U ′ are physically equivalent if and only if there exist a character

χ̃ of G and a unitary or antiunitary operator B such that

U ′ = χ̃B−1UB.
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As a first step we define in terms of U and χ̃ two induced representations U+ and U− of G such that

U± = χ̃W−1
± UW±,

where W+ [resp. W−] is unitary [resp. antiunitary]. In particular, U+ and U− are physically equivalent
to U .

By the previous result χ̃ = χ̂χ, where χ̂ ∈ Âs and χ is a character of H. Define the maps ψ+ and ψ− from
Â onto Â as ψ±(x) := χ̂x±1. The maps ψ± are measurable isomorphisms that commute with the action
of G, so that, for all x ∈ Â, ψ± maps the orbit G[x] onto the orbit G[ψ±(x)] and one has Gx = Gψ±(x).
If ν is an invariant measure on G[x], the image measure ν± with respect to ψ± is an invariant measure
on G[ψ±(x)] and if c is a section for the orbit G[x], then c± = c ◦ ψ−1

± is a section for the action of G on
the orbit G[ψ±(x)].

Fix a unitary operator L+ and an antiunitary operator L− on K. Consider the representations of Gx,

g 7→ χ̃gL±(xD)gL
−1
± ,

and observe that their restriction to A are exactly the elements x±. Since Gx± = Gx we can define the
induced representations of G,

U± := IndG
Gx±

(χ̃L±xDL−1
1 ±),

acting in L2(G[x±], ν±,K).

Moreover, define the operators W± from L2(G[x±], ν±,K) onto L2(G[x], ν,K)

(W±f)(y) = χ̃±1
c(y)L

−1
± f(ψ±(y)), y ∈ G[x].

It is easy to show that W+ [resp. W−] is unitary [resp. antiunitary].

We have
U± = χ̃W−1

± UW±.

In fact, let g ∈ G, f ∈ L2(G[x±], ν±,K), and y ∈ G[x±]

χ̃g

(
W−1
± Ug W±f

)
(y) = χ̃gχ̃

−1
c±(y)L± (Ug W±f) (ψ−1

± (y))

= χ̃gχ̃
−1
c±(y)L±(xD)γ±(g,y)(W±f)(g−1[ψ−1

± (y)])

= χ̃gχ̃
−1
c±(y)L±(xD)γ±(g,y)χ̃

±1
c±(g−1[y])L

−1
± f(g−1[y])

= (χ̃L±xDL−1
± )γ±(g,y)f(g−1[y])

= (U±
g f)(y).

where γ±(g, y) = c±(y)−1gc±(g−1[y]) = c(ψ−1
± (y))−1gc(g−1[ψ−1

± (y)]).

To conclude the proof of the lemma, observe first that there always exists a unitary operator V such that
either B = W+V or B = W−V , according to the fact that B is unitary or antiunitary. Hence U and U ′

are physically equivalent if and only if U ′ is unitarily equivalent either to U+ or to U−. Due to a theorem
of Mackey (see, for example, Theorem 6.42 of [15]), this is possible if and only if there exist h ∈ G such
that Gx′ = hGxh−1 and a unitary or antiunitary operator M (depending on the fact that B is unitary
or antiunitary) such that (x′D′)hgh−1 = χ̃gM(xD)gM

−1 for all g ∈ Gx. ut

Proof (Proof of Theorem 4).

1. Since the semidirect product is regular, a theorem of Mackey (see, for example, Theorem 6.42 of [15])
implies that each irreducible unitary representation of G is unitarily (hence physically) equivalent to
one of the form IndG

Gx
(xD′) for some x ∈ Â and some irreducible representation D of Gx ∩H. There

is an index i such that x ∈ Õxi and, by definition of orbit class, there exist y ∈ Âs and h ∈ G such
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that x = yh[xε
i ] where ε = ±1. Hence Gx = hGxih

−1 and we can define a representation D of Gxi ∩H
either as

Dg = D′
h−1gh, g ∈ Gxi ∩H,

if ε = 1, or as
Dg = MD′

h−1ghM−1, g ∈ Gxi
∩H,

if ε = −1, where M is a fixed antiunitary operator. Then, by Lemma 11, IndG
Gx

(xD′) is physically

equivalent to IndG
Gxi

(xiD).

2. If IndG
Gxi

(xiD) and IndG
Gxj

(xjD
′) are physically equivalent, the condition 2 of Lemma 11 with the

choice g = a ∈ A implies that xj = yh[xε
i ] for some y ∈ Âs and ε = ±1, so that, by definition of xi,

i = j.

3. Apply Lemma 11 with x = x′, taking into account the form of the characters of G. ut

We observe that if D′ is unitarily equivalent to D, the conditions (a) of item 3 of Theorem 4 are satisfied
with y = 1, χ̃ = 1, and h = e and this is exactly the case of unitary equivalence of the induced
representations. However, in general, there are other possibilities apart from the unitary equivalence.
There are even situations in which both conditions (a) and (b) hold.

3.5 An example: the temporal evolution of a closed system

As a first simple illustration of the general theory developed so far, consider the additive group of the real
line R. It is a connected and simply connected Lie group, so that, in particular, its covering group R∗ is R
itself, and the symmetry actions of R on H take values in Σ0, R 3 t 7→ σt ∈ Σ0. The Lie algebra Lie (R) of
the additive group R can be identified with the vector space R, with the Lie product [x, y] = 0, x, y ∈ R,
and with the exponential map Lie (R) 3 x 7→ exp(x) = x ∈ R being the identity. Any bilinear function F
on R×R is of the form F (x, y) = λxy for some λ ∈ R so that there is no skew symmetric bilinear forms
in the present case, and, in particular, the vector space of the closed forms H2(Lie (R),R) contains only
the zero vector. The central universal extension of R is thus R, R = R∗ = R. According to the Stone
theorem, any (strongly continuous) unitary representation R 3 t 7→ Ut ∈ U is of the form Ut = eitH ,
t ∈ R, where H is a selfadjoint operator acting in H. Any symmetry action σ : R → Σ0 is now of the
form σ = σU for some unitary representation U : t 7→ Ut = eitH , and two symmetry actions σ1 and σ2

are equivalent if and only if the representations U1 and U2 differ by a character, that is, H1 = H2 +aI for
some real number a. The temporal evolution of a closed system is a particular instance of the symmetry
actions R→ Σ0, and we may conclude that two systems with Hamiltonians H1 and H2 which differ only
by a constant aI do have the same evolutions.
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4

The Galilei groups

In this chapter we describe the Galilei group and its universal central extension both in 3+1 and in 2+1
dimensions.

4.1 The 3 + 1 dimensional case

In this section we use the vector notation x for the elements of R3.

Let V := (R3, +) be the three dimensional real vector group, the group of velocity transformations, and
let SO(3) be the classical Lie group of the special orthogonal 3 × 3 real matrices, the rotation group in
R3. For any (v, R) ∈ V × SO(3) we put, following the notation of the semidirect product in A.1,

f(v, R) ≡ R[v] := Rv.

This defines an analytic action of SO(3) on V and the semidirect product defined by this action is the
homogeneous Galilei group

Go := V ×′ SO(3).

According to the definition of Lie subgroup in A.1 both V and SO(3) are closed Lie subgroups of Go,
and V is a normal subgroup of Go. In addition, V is Abelian, and SO(3) is compact and connected but
not simply connected [39].

Let Ts := (R3,+) be the three dimensional real vector group, the group of space translations, Tt := (R, +)
the one dimensional real vector group, the group of time translations, and let T := Ts × Tt denote the
four dimensional real vector group of space-time translations. We denote its elements by (a, b). Consider
the action of Go on T defined as

(v, R)[(a, b)] := (Ra + bv, b)

for all (v, R) ∈ Go, (a, b) ∈ T . This is an analytic action and it defines the semidirect product, the Galilei
group

G := T ×′ Go.

As above, T and Go are closed Lie subgroups of G, and T is normal and Abelian.

For any g ∈ G we write g = (a, b,v, R) and we call them the Galilei transformations. The identity element
of G is e = (0, 0,0, I) and the inverse of an element g is given as

g−1 = (a, b,v, R)−1 = (−R−1(a− bv),−b,−R−1v, R−1).

The product of two transformations g, g′ obtains the form

gg′ = (a, b,v, R)(a′, b′,v′, R′) = (Ra′ + b′v + a, b + b′, Rv′ + v, RR′).



4.1.1 Physical interpretation

The Galilei group G acts as a Lie transformation group on R4:

g[(x, t)] := (Rx + vt + a, b + t)

for any g ∈ G and for all (x, t) ∈ R4. This action allows one to identify G as the group of transformations
of the coordinates of the Newtonian space-time R4 = R3 × R. In fact, each reference frame F attaches a
Cartesian system of coordinates to the space-time points, and any two inertial reference frames F, F ′ are
obtained from each other by affecting a rotation R, a velocity boost v, a space translation a, and a time
translation b. In other words, the coordinates (x′, t′) of an inertial frame F ′ are related to the coordinates
(x, t) of another inertial frame F as follows:

x′ = Rx + vt + a,

t′ = b + t.

This allows one to regard the Galilei group G as the group of the coordinate transformations between
the inertial frames of the Newtonian space-time.

4.1.2 The covering group

Regarding G as an analytic manifold, G is the product of T × V = R7 and of SO(3). The manifold R7

is simply connected, whereas SO(3) fails to be simply connected and its universal covering group is the
(complex) special unitary group SU(2). We let δ : SU(2) → SO(3) denote the covering homomorphism.
It is an analytic function and its kernel is ker (δ) = {±I}. The group

G∗ := T ×′ (V ×′ SU(2)) ≡ T ×′ G∗o
is connected and simply connected and is the covering group of the Galilei group. The covering homo-
morphism δ : G∗ → G is given by δ((a, b,v, h)) = (a, b,v, δ(h)) and its kernel consists of the two elements
±e∗.

4.1.3 The Lie algebra

Since T and V are vector groups, their Lie algebras can be canonically identified with the vector spaces
R4 and R3, respectively,

Lie (T ) = R4,

Lie (V) = R3.

The exponential maps Lie (T ) → T and Lie (V) → V are then the identity maps. These Lie algebras are
Abelian, so that, for instance, [a1, a2] = 0 for all a1, a2 ∈ Lie (T ). The Lie algebra of SO(3) is the vector
space so (3) of 3× 3 real traceless skew symmetric matrices,

Lie (SO(3)) = so (3).

The exponential map exp : so (3) → SO(3) is the usual exponential map of matrices, exp A = eA, A ∈
so (3), and the bracket is now the commutator of the matrices, [A1, A2] = A1A2−A2A1, A1, A2 ∈ so (3).
The Lie algebra so (3) is not Abelian and it has no proper ideals, that is, so (3) is simple. Therefore, the
linear span of the elements [A1, A2], A1, A2 ∈ so (3), is the whole so (3),

[so (3), so (3)] = so (3).

The Lie algebra of G0 = V ×′ SO(3), as a vector space, is
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Lie (G0) = Lie (V)⊕ Lie (SO(3))
= R3 ⊕ so (3).

Due to the action of SO(3) on V, R[v] = Rv, one has [v, A] = Av for all v ∈ Lie (V), A ∈ so (3), showing
that Lie (V) is an ideal in Lie (G0); in fact,

[Lie (V), so (3)] = Lie (V).

The Lie algebra of G = T ×′ G0, as a vector space, is

Lie (G) = Lie (T )⊕ Lie (V)⊕ Lie (SO(3))
= R4 ⊕ R3 ⊕ so (3).

We let X = (a,v, A) ≡ (a, b,v, A) denote its generic element. Taking into account the semidirect product
structure of G one obtains

[Lie (T ), Lie (G0)] ⊂ Lie (T ).

Since T is normal in G, the inner automorphisms define a natural action of SO(3) on T which preserves
the splitting T = Ts ×Tt. Taking the adjoint action on Lie (T ) = Lie (Ts)⊕ Lie (Tt) we have the brackets
[a, A] = Aa, a ∈ Lie (Ts), A ∈ so (3), [b, A] = 0, b ∈ Lie (Tt), A ∈ so (3), showing that

[Lie (Ts), so (3)] = Lie (Ts)
[Lie (Tt), so (3)] = 0.

Moreover, by explicit calculation, one gets [b,v] = bv and [a,v] = 0, that is,

[Lie (Tt), Lie (V)] = Lie (Ts)
[Lie (Ts), Lie (V)] = 0.

In particular, the above relations show that Lie (T ) is an ideal in Lie (G).

The Lie algebra of the covering group G∗ = T ×′ (V ×′ SU(2)) of the Galilei group is

Lie (G∗) = Lie (T )⊕ Lie (V)⊕ Lie (SU(2))
= R4 ⊕ R3 ⊕ su (2),

where su (2) is the vector space of all 2×2 skew Hermitian complex matrices. The covering homomorphism
δ : SU(2) → SO(3) induces an isomorphism between the Lie algebras of SU(2) and SO(3). We denote it
by δ∗ : su (2) → so (3). The Lie algebras Lie (G) and Lie (G∗) of the Galilei group G and its covering group
G∗ are thus isomorphic. We denote an element of Lie (G∗) by X∗ = (a,v, B) ≡ (a, b,v, B), B ∈ su (2),
and we recall that, for instance, [v, B] = δ∗(B)v and [a, B] = δ∗(B)a.

4.1.4 The multipliers for the covering group

We compute next the multipliers of the covering G∗ of the Galilei group, which is a connected simply
connected Lie group. Hence, the problem is reduced to study the closed forms on its Lie algebra Lie (G∗).

Let F be a closed R-form on the Lie algebra Lie (G∗). We observe that su (2) acts on V, endowed with
the usual inner product, as an irreducible orthogonal representation and on T , endowed with the usual
inner product, as an orthogonal representation which is the direct sum of two non equivalent irreducible
representations acting on Ts and Tt, respectively.

Using the theorem 7.40 of [36] one concludes that F restricted to Lie (G∗0) × Lie (G∗0) and (Lie (T ) ⊕
su (2))× (Lie (T )⊕ su (2)) is exact, so that there is a linear function q1: Lie (G∗) → R such that

F (X,Y ) = q1([X,Y ]), X, Y ∈ Lie (G∗0),
q1(a) = 0, a ∈ Lie (T ).

37



Let F ′(X, Y ) := F (X, Y ) − q1([X, Y ]), X,Y ∈ Lie (G∗). Then F ′ is equivalent to F and it is zero on
Lie (G∗0)× Lie (G∗0). Moreover, there is a linear function q2 on Lie (G∗) such that

F ′(X, Y ) = q2([X,Y ]), X, Y ∈ Lie (T )⊕ su (2),
q2(v) = 0, v ∈ Lie (V).

Let F ′′(X, Y ) := F ′(X,Y ) − q2([X, Y ]), X, Y ∈ Lie (G∗). Then F ′′ is equivalent to F and it is zero on
(Lie (T )⊕ su (2))× (Lie (T )⊕ su (2)) as well as on Lie (G∗0)× Lie (G∗0) since [Lie (V),Lie (G∗0)] ⊂ Lie (V).

Let b ∈ Lie (Tt) and v ∈ Lie (V). Since Lie (V) = [Lie (V), su (2)] there exist v′ ∈ Lie (V) and B ∈ su (2)
such that v = δ∗(B)v′ = [v′, B]. Hence,

F ′′(b,v) = F ′′(b, [v′, B]) = −F ′′(B, [b,v′])− F ′′(v′, [B, b]) = 0

since [b,v′] = bv′ ∈ Lie (Ts) and [B, b] = 0.

We are left with the restriction of F ′′ to Lie (V)× Lie (Ts), that is, to R3 ×R3. Let C be the operator on
R3 such that

F ′′(v,a) = v · Ca, v ∈ Lie (V), a ∈ Lie (Ts).

Since for all B ∈ su (2)

F ′′(v, [a, B]) + F ′′(a, [B,v]) = 0, v ∈ Lie (V), a ∈ Lie (Ts),

one obtains that Cδ∗(B) = δ∗(B)Ct, B ∈ su (2), where Ct denotes the transpose of C. This then implies
that C is a multiple of the identity operator.

Collecting all the results, we have that, given a closed form F : Lie (G∗) × Lie (G∗) → R, there is a real
number m ∈ R such that F is equivalent to Fm, where Fm is given by

Fm(X1, X2) = m(v1 · a2 − a1 · v2),

with Xi = (ai, bi,vi, Bi) ∈ Lie (G∗), i = 1, 2. The form Fm is exact if and only if m = 0 and the forms
Fm and Fm′ are equivalent if and only if m = m′.

It follows that the vector space H2(Lie (G∗),R) is one dimensional and its elements are the equivalence
classes [Fm], m ∈ R.

4.1.5 The universal central extension

We close this Section by computing the universal central extension of the covering group of the Galilei
group. Since H2(Lie (G∗),R) is one dimensional, G is of the form R ×′τ G∗, where τ is an analytic R-
multiplier for G∗ such that [F1] = [Fτ ], as given in Lemma 7 of Section 3.2 of Chapter 3, and

F1(X∗
1 , X∗

2 ) = v1 · a2 − a1 · v2,

with X∗
i = (ai, bi,vi, Bi) ∈ Lie (G∗), i = 1, 2.

To compute τ , we proceed to show that G is, in fact, a semidirect product of R× T = R5 and G∗0. This
can be done by studying the Lie algebra of G.

The Lie algebra of G is given by

Lie (G) = R⊕ Lie (G∗)
= R⊕ (Lie (T )⊕ (Lie (V)⊕ su (2))),

with the Lie product

[(m1, X
∗
1 ), (m2, X

∗
2 )] := (F1(X∗

1 , X∗
2 ), [X∗

1 , X∗
2 ]), m1, m2 ∈ R, X∗

1 , X∗
2 ∈ Lie (G∗).
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By a direct computation one can confirm that Lie (V)⊕ su (2) is a subalgebra of Lie (G),

[Lie (V)⊕ su (2), Lie (V)⊕ su (2)] ⊆ Lie (V)⊕ su (2),

with the identification of an element (v, B) ∈ Lie (V)⊕ su (2) with (0,v, B) ∈ Lie (G), 0 ∈ R5. As another
immediate observation one has that R ⊕ Lie (T ) = R5 is an Abelian subalgebra of Lie (G), again, with
the identification of (m,a, b) ∈ R ⊕ Lie (T ) with (m,a, b,0, 0) ∈ Lie (G). In fact, R ⊕ Lie (T ) is an ideal
of Lie (G). Indeed, for (v, B) ∈ Lie (V)⊕ su (2) and (m,a, b) ∈ R⊕ Lie (T ) one has

[(v, B), (m,a, b, )] ≡ [(0,0, 0,v, B), (m,a, b,0, 0)]
= (v · a, [(v, B), (a, b)])
= (v · a, δ∗(B)a + bv, 0,0, 0)
= : ρ∗(v, B)(m,a, b),

with ρ∗(v, B) denoting the 5× 5 real matrix

ρ∗(v, B) =




0 v 0
0 δ∗(B) v
0 0 0


 ,

which acts on the (column) vector (m,a, b) ∈ R5. This shows that Lie (G) is a semidirect product of
R ⊕ Lie (T ) with Lie (V) ⊕ su (2) relative to ρ∗. Therefore, G is a semidirect product of R × T and
V ×′ SU(2), and it remains to determine the action of V ×′ SU(2) on R× T .

The action of (v, h) ∈ V ×′ SU(2) on R5 is given by the 5× 5 matrix ρ(v, h) such that the differential at
the identity of ρ : (v, h) 7→ ρ(v, h) is ρ∗(v, B). Since ρ is a representation we can compute the action of
v and h separately.

Let B ∈ Lie (su (2)). Then

ρ(0, eB) = eρ∗(0,B)

=
∞∑

n=0

1
n !

ρ∗(0, B)

=




1 0 0
0 eδ∗(B) 0
0 0 1




Since eδ∗(B) = δ(eB) and the exponential map is surjective we have for h = eB

ρ(0, h) =




1 0 0
0 δ(h) 0
0 0 1




Let v ∈ Lie (V) so that expv = v ∈ V. By a direct computation one now gets

ρ(v, I) = eρ∗(v,0) =




1 v 1
2 v2

0 I v
0 0 1




Therefore,

ρ(v, h) = ρ(v, I)ρ(0, h) =




1 v · δ(h) 1
2 v2

0 δ(h) v
0 0 1




The action of (v, h) ∈ V ×′ SU(2) on R5 is thus explicitly given by

ρ(v, h)(m,a, b) = (m + v · δ(h)a + 1
2bv2, δ(h)a + bv, b).
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From that one may also extract the corresponding multiplier for G∗. Indeed, for any (0,ai, bi,vi, hi) ∈ G,
i = 1, 2, the multiplication law is now given as

(0,a1, b1,v1, h1)(0,a2, b2,v2, h2) =
(v1 · δ(h1)a2 + 1

2b2v2,a1 + δ(h1)a2 + b2v1, b1 + b2,v + δ(h1)v2, h1h2),

which shows that
τ(g∗1 , g∗2) = v1 · δ(h1)a2 + 1

2b2v2
1.

Since G = R ×′τ G∗, the group law in G is now given as follows: for any (c1, g
∗
1), (c2, g

∗
2) ∈ G, with

g∗i = (ai, bi,vi, hi) ∈ G∗, ci ∈ R,

(c1, g
∗
1)(c2, g

∗
2) = (c1 + c2 + τ(g∗1 , g∗2), g∗1g∗2)

= (c1 + c2 + 1
2b2v2

1 + δ(h1)a2 · v1, g
∗
1g∗2),

where we have fixed the vector [F1] as the basis of the vector space H2(Lie (G∗),R).

Recalling that G∗ = T ×′ (V ×′ SU(2)), we observe first that A ≡ R5 = {(a, b, c) : (a, b) ∈ T , c ∈ R},
with the identification (a, b, c) = (c,a, b,0, I), and H ≡ V ×′ SU(2), with the identification (v, h) =
(0, 0,v, h, 0), are (closed Lie) subgroups of G, A being a normal Abelian subgroup of it. By a direct
computation one verifies that G = AH and A ∩H contains only the identity element (0, 0,0, I, 0) of G.
In other words,

G = A×′ H,

and the action of H on A is given as

(v, h)[a] = (v, h)(a, b, c)(v, h)−1

= (δ(h)a + bv, b, c + 1
2bv2 + δ(h)a · v).

4.2 The 2 + 1 dimensional case

From the physical point of view, the interest in the Galilei group in 2 + 1 dimensions arises in solid state
physics where some genuine examples of two dimensional systems can be found.

In this section we use the vector notation x for the elements of R2. The Galilei group in 2+1 dimensions
is

G = T ×′ (V ×′ SO(2)),

where T = Ts × Tt, Ts = R2, Tt = R, and V = R2. The semidirect product structure is the analogous
of the 3 + 1 dimensional case. The covering group is G∗ = T ×′ (V ×′ R) and we denote its element as
(a, b,v, r), where a,v ∈ R2, b ∈ R and r ∈ R. The kernel of the covering homomorphism δ is

{(0, 0,0, 2πk) : k ∈ Z}.

The Lie algebra of G∗ is, as a vector space,

Lie (G∗) = Lie (T )⊕ Lie (V)⊕ Lie (R)
= R3 ⊕ R2 ⊕ R,

We denote the elements of Lie (G∗) by (a, b,v, r), with b, r ∈ R, a,v ∈ R2.

4.2.1 The multipliers for the covering group and the universal central extension

A result of Bose [4] shows that H2(Lie (G∗),R) is a three dimensional vector space and a basis is given
by the equivalence classes of the following closed R-forms:
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F1 ((a1, b1,v1, r1), (a2, b2,v2, r2)) = r1b2 − r2b1,

F2 ((a1, b1,v1, r1), (a2, b2,v2, r2)) = v1 · a2 − v2 · a1,

F3 ((a1, b1,v1, r1), (a2, b2,v2, r2)) = v1 ∧ v2,

where v1∧v2 is a shorthand notation for v1xv2y−v2xv1y. Define F as the closed R3-form F = (F1, F2, F3).
To compute the corresponding R3-multiplier τF of G∗, we have to determine the simply connected Lie
group G∗F with Lie algebra

Lie (G∗F ) = R3 ⊕F Lie (G∗).

The algebra Lie (G∗F ) is, in fact, a semidirect sum. This can be seen as follows. Write Lie (G∗F ) = R2 ⊕
Lie (G∗)⊕ R and its elements as (c1, c2, X, x) with c1, c2, x ∈ R and X ∈ Lie (G∗) such that

[(c1, c2, X, x), (c1, c2, X
′, x′)] = ( F1(X, X ′), F2(X, X ′), [X, X ′], F3(X, X ′) ) .

By direct computation, the set

{(v, r, x) ≡ (0, 0,0, 0,v, r, x) : (v, r, x) ∈ Lie (V)⊕ Lie (R)⊕ R}

is a subalgebra of Lie (G∗F ) with Lie brackets

[(v, r, x), (v′, r′, x′)] = (δ̇(r)v, 0,v ∧ v′)

where (v, r, x), (v′, r′, x′) ∈ Lie (V)⊕ Lie (R)⊕ R. If H = V × R× R is the Lie group with the product

(v, r, x)(v′, r′, x′) = (v + δ(r)v′, r + r′, x + x′ + v ∧ δ(r)v′),

then one can check that its Lie algebra is Lie (V)⊕ Lie (R)⊕ R.

Moreover, the set

{(c1, c2,a, b) ≡ (c1, c2,a, b,0, 0, 0) : (c1, c2,a, b) ∈ R2 ⊕ Lie (T )}

is an Abelian ideal of Lie (G∗F ) isomorphic to Lie (R2 × T ).

Taking into account the previous results and the fact that, as a vector space,

Lie (G∗F ) =
(
R2 ⊕ Lie (T )

)⊕ (Lie (V)⊕ Lie (R)⊕ R) ,

the Lie algebra Lie (G∗F ) is isomorphic to the semidirect sum of Lie (R2 × T ) and Lie (H).

Explicitly, if (v, r, x) ∈ Lie (H) and (c1, c2,a, b) ∈ Lie (R2 × T ) one has

[(v, r, x), (c1, c2,a, b)] = (rb,v · a, δ̇(r)a + bv, 0)
=: ρ̇(v, r, x)(c1, c2,a, b),

where ρ̇(v, r, x) is the 5× 5 matrix

ρ̇(v, r, x) =




0 0
0 0

0
v

r
0

0 0
0 0

0 −r
r 0 v

0 0 0 0




,

which acts on the column vector (c1, c2,a, b) ∈ Lie (R2 × T ).

If ρ is the representation of H such that its differential at the identity is ρ̇, then G∗F is the semidirect
product of R2 × T and H with respect to ρ. A simple calculation shows that
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ρ(v, 0, 0) =




1 0
0 1

0
v

0
1
2v

2

0 0
0 0

1 0
0 1 v

0 0 0 1




ρ(0, r, 0) =




1 0
0 1

0
0

r
0

0 0
0 0 δ(r) 0

0 0 0 1




ρ(0, 0, x) =




1 0
0 1

0
0

0
0

0 0
0 0

1 0
0 1 0

0 0 0 1




.

Hence the action of H on R2 × T is given by

(v, r, x)[(c1, c2,a, b)] = (c1 + br, c2 + v · δ(r)a +
bv2

2
, δ(r)a + bv, b).

If g = (c1, c2,a, b,v, r, x) and g′ = (c′1, c
′
2,a

′, b′,v′, r′, x′) are in G∗F , then

gg′ = (c1 + c′1 + b′r, c2 + c′2 + v · δ(r)a′ + b′v2

2
,a + δ(r)a′ + b′v, b + b′,

v + δ(r)v′, r + r′, x + x′ + v ∧ δ(r)v′),

so that the explicit form of τF = (τ1, τ2, τ3) is

τ1(g, g′) = b′r

τ2(g, g′) = v · δ(r)a′ + b′v2/2
τ3(g, g′) = v ∧ δ(r)v′.

By Theorem 2, the equivalence classes [τ1], [τ2], [τ3] form a basis of H2(G∗,R). Moreover τ2 and τ3 satisfy
the condition

τi(k, g∗) = τi(g∗, k), k ∈ Ker δ, g∗ ∈ G∗,

while τ1 does not. It follows that dim H2(G∗,R)δ = 2, τ = (τ2, τ3) and the universal central extension G
is of the form R2 ×′τ G∗. We observe that G is the semidirect product of the closed vector subgroup

A = T × R = {(a, b, c) ' (c,a, b,0, 0, 0) : c ∈ R,a ∈ Ts, b ∈ Tt}

and the Lie subgroup H

H = {(v, r, x) ' (0,0, 0,v, r, x) : v ∈ V, x, r ∈ R}

with respect to the action of H on A given by

(v, r, x)[(a, b, c)] = (δ(r)a + bv, b, c + v · δ(r)a +
bv2

2
).

Finally, one has that

K = {(0, 0, c,0, 2πn, x) : c, x ∈ R, n ∈ Z} ' Z× R2.
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5

Galilei invariant elementary particles

In this Chapter we apply the general theory of symmetry actions as developed in Chapters 2 and 3 to
the Galilei groups of Chapter 4 splitting the treatment again in the 3+1 and 2+1 dimensional cases. We
find it worthwhile, however, to start with a general analysis of the constraints imposed by the relativity
principle on the description of a physical system in quantum mechanics.

5.1 The relativity principle for isolated systems

The description of physical phenomena is always done according to the choice of a reference frame so that,
in particular, the quantum mechanical description of a system is given with respect to a chosen frame. In
the following we also use the term observer as a synonym for a reference frame. The relativity principle
deals with the comparison of the descriptions of a physical system with respect to different observers. In
order to do this one selects a preferred family of reference frames, namely the inertial observers.

The transformations between the space-time coordinates of inertial frames form a group G that we call
the covariance group of space and time. Clearly G acts transitively and freely on the set of inertial
observers. It is a basic experimental fact that this group is the Poincaré group though in many physical
situations this group can also be approximated by the Galilei group. In view of this fact, we first discuss
the relativity principle without specifying the explicit form of G.

Let S be a physical system. According to the general rules of quantum mechanics any inertial observer
F describes S by fixing a Hilbert space HF and identifying states and observables with suitable sets of
operators on HF . It is no loss of generality to assume that the Hilbert space HF does not depend on F ,
hence we denote by H a fixed complex separable Hilbert space used by all inertial observers to describe
S. We also assume that all inertial observers identify states and observables of S with operators on H
according to their own coordinate system.

Moreover, we assume that the dynamical evolution of each observer preserves the natural structures of
the sets of states and observables. This amounts to saying that, given any observer F , for all t1, t2 ∈ R
there exist DF (t1, t2) satisfying

DF (t1, t2) ∈ Σ

DF (t2, t3)DF (t1, t2) = DF (t1, t3)
DF (t1, t2) = DF (t2, t1)−1

for all t1, t2, t3 ∈ R. The mapping DF (t1, t2) represents time evolution from t1 to t2 according to F .

Any observer F associates to the evolving system S a dynamical state, namely a map

R 3 t 7→ TF (t) ∈ S

such that TF (t2) = DF (t1, t2)TF (t1) for all t1, t2 in R. This map is completely determined by DF and
TF (0), that is the state that F assigns to S at the origin of his time. Hence, any observer identifies his set



of dynamical states with the set of states S mapping each dynamical state to the corresponding initial
state. Note that this identification depends on the observer F and on the dynamics.

Two inertial observers F and F ′ describe the same evolving system in general with two different initial
states T and T ′ and this defines a bijective function sF ′

F : S → S mapping T to T ′. It is natural to
assume that sF ′

F preserves the structure of the set of states, so that sF ′
F ∈ Σ. Moreover, by definition,

sF ′′
F ′ sF ′

F = sF ′′
F must hold for all inertial observers F, F ′, F ′′. Since the group G acts transitively and freely

on the set of inertial observers, we will denote the map sF ′
F as sF,g, where g ∈ G is the only element in

G such that gF = F ′. Hence we have

sgF,hsF,g = sF,hg g, h ∈ G. (5.1)

It is important to note that this relation determines uniquely sF,g for all F and all g if sF0,g is known for
all g and for a fixed inertial observer F0. In fact, suppose that sF0,g is given for all g and let F = hF0. If
one defines sF,g = sF0,ghs−1

F0,h, then, given h′ ∈ G, one has

sh′F,g = sF0,gh′hs−1
F0,h′h

= sF0,gh′hs−1
F0,hsF0,hs−1

F0,h′h

= shF0,gh′s
−1
hF0,h′

= sF,gh′s
−1
F,h′ ,

so that the maps sF,g satisfy (5.1).

The relativity principle states that all inertial observers are equivalent for the description of isolated
systems. This principle is implemented in quantum mechanics in the following way: if S is an isolated
system, the map sF,g depends only on the element g of the group G and not on the observer F . From
Eq. (5.1) and the relativity principle it follows that for an isolated system the map G 3 g 7→ sg := sF,g ∈ Σ
is a group homomorphism (which does not depend on the choice of F ). Moreover, it is natural to assume
that this homomorphism is continuous, so that the relativity principle associates to any isolated system
a symmetry action of the space-time covariance group G.

As a consequence of the relativity principle and the results obtained in Chapter 3, one sees that the isolated
and elementary systems are described in quantum mechanics by the irreducible unitary representations
of the universal central extension G of the covariance group G of space-time. In the following sections,
we apply this fundamental result to the case of G being the Galilei group both in 3 + 1 dimensions and
in 2 + 1 dimension. However, to close this part, we discuss briefly the case of non isolated systems.

5.1.1 Galilei systems in interaction

For a non isolated system the maps sF,g depend in general both on F and on g. However in the case of
Galilean relativity, the peculiar structure of the Galilei group allows us to guess the dependence of the
maps sF,g from F and g also in the case of non isolated systems.

The Galilei group G can be written as
G = H ×′ Tt,

where H = (Ts × V) ×′ SO(3) is the isochronous subgroup and Tt is the subgroup of time translations.
The subgroup H is normal in G and Tt acts on H as

b[(a,v, R)] = (a− bv,v, R).

Any element g of G can be written, in a unique way, as g = hb with h ∈ H and b ∈ Tt.

Observe that, if b is an element of the time translation subgroup Tt and F is any inertial observer, by
definition we have

sF,b = DF (0,−b), (5.2)
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where DF is the time evolution operator of F .

Let now S be a physical system and assume it is isolated. As explained before, there is a symmetry action
g 7→ sg associated to S. To stress the fact that sg refers to a free system, we denote it by sf

g . Suppose now
that the same system is subject to an interaction. Then the maps sF,g will in general depend also on the
observer F . However, fixing an inertial observer F0 (the laboratory), if h is an element of the isochronous
subgroup, F0 and hF0 have the same origin of the time, so that it is natural to assume that the map
sF0,h is the same than in the free case, that is, we assumes that

sF0,h = sf
h h ∈ H. (5.3)

If g = hb ∈ G then (5.1) implies sF0,g = sF0,hb = sbF0,hsF0,b. This suggests to assume that

sF0,g = sf
hDF0(0,−b) g = hb ∈ G. (5.4)

As mentioned before, the above relations, together with (5.1) fixes uniquely the maps sF,g for all F and
g for the interacting system S. Explicitly, let g1, g2 ∈ G, g1 = h1b1, g2 = h2b2 and consider the inertial
observer F = g1F0. Then

sF,g2 = sg1F0,g2

= sF0,g2g1s
−1
F0,g1

= sF0,h2b2[h1]b2b1s
−1
F0,g1

= sf
h2b2[h1]

DF0(0,−b2 − b1)DF0(0,−b1)−1sf

h−1
1

= sf
h2b2[h1]

DF0(−b1,−b2 − b1)s
f

h−1
1

.

This is consistent with (5.2) only if the dynamical evolution operators satisfy

DF (0, b2) = sf
b2[h1]

DF0(−b1,−b2 − b1)s
f

h−1
1

for F = h1b1F0.

Moreover, one verifies that this construction is independent of the choice of the “laboratory frame” F0.
In particular, if g2 = h2 ∈ H,

sF,h2 = sf
h2h1

sf

h−1
1

= sf
h2

.

5.2 Symmetry actions in 3 + 1 dimensions

To determine the unitary irreducible representations of the universal central extension G = R5 ×′ G∗o of
the Galilei group G we follow the prescription of Sections 3.3 and 3.4 of Chapter 3.

5.2.1 The dual group and the dual action

Any quintuple (p, E, m) of real numbers defines a character χ of the vector group A = R5 through the
formula:

χ(a, b, c) = ei(−p·a+Eb+mc), (a, b, c) ∈ R5,

(for sake of convenience, we have chosen the minus sign in the first term of the exponent). On the other
hand, it is well known that all the characters of R5 are of this form. Therefore, the dual group Â can be
identified with the additive group R5, for which we use the notation P5. The elements of P5 are denoted
by p = (p, E, m).

Since the action of an element ḡ = (a, b, c,v, h) ∈ G on A = R5 is given by
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ḡ[(a′, b′, c′)] = (δ(h)a′ + b′v, b′, c′ + 1
2b′v2 + v · δ(h)a′),

with (a′, b′, c′) ∈ A, the dual action on Â = P5 is

ḡ[(p, E,m)] = (δ(h)p + mv, E + 1
2mv2 + v · δ(h)p,m),

with (p, E, m) ∈ P5.

5.2.2 The orbits and the orbit classes

The action of G on the dual group P5 splits it into three kinds of orbits.

For fixed Eo, m ∈ R, m 6= 0, consider the point pEo,m := (0, Eo,m) ∈ P5. Its orbit is

G[pEo,m] = {(p, E,m) |p ∈ P3, E = Eo +
p2

2m
}.

Similarly, the orbit of a point pr := ((0, 0, r), 0, 0) ∈ P5, with a fixed r ∈ R, r > 0, is

G[pr] = {(p, E, 0) |p ∈ P3, |p| = r,E ∈ P}.

Finally, the orbit of a point pEo := (0, Eo, 0) ∈ P5 is the singleton set

G[pEo ] = {(0, Eo, 0)}.

By a direct inspection one observes that these three classes of orbits exhaust the whole set P5, and that
these orbits are closed, and thus also locally closed in P5.

Any character of G is of the form yχ, where y = (0, Eo, 0) ∈ P5 and χ is a character of G∗o. Since G∗o is
also a semidirect product, G∗o = V ×′ SU(2), its characters are of the product form, too. But V̂ = P3 has
only the origin as a one-point orbit and SU(2), as a simple Lie group, has no nontrivial characters. Thus
any character of G is of the form

ḡ = (a, b, c,v, h) 7→ eibEo ,

with Eo ∈ P. The orbit classes are the following: for any m > 0,

Õ1
m = ∪Eo∈R

(
G[pE0,m] ∪G[pE0,−m]

)
,

for any r > 0,
Õ2

r = G[pr],

and, finally,
Õ3 = ∪Eo∈RG[(0, Eo, 0)].

5.2.3 Representations arising from Õ1
m

In the orbit class Õ1
m we choose the orbit G[p0,m]. The function

P3 3 p 7→ (p, p2

2m ,m) ∈ G[p0,m]

defines a global coordinate system (surjective diffeomorphism) of P3 onto G[p0,m].

The dual action of G on G[p0,m] induces an action on P3, for any ḡ = (a, b, c,v, h) ∈ G and for each
p ∈ P3,

ḡ[p] = δ(h)p + mv,
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(notice that the action of G∗o is the natural action of the Euclidean group on P3). The Lebesgue measure
dp is a G-invariant σ-finite measure on P3 and the stability subgroup of the point p0,m of the orbit
G[p0,m], that is, of the point 0 ∈ P3, is readily seen to be Gpo = A×′ SU(2). The map β : P3 → G

p 7→ (0, 0, 0, p
m , I),

has the properties β(0) = (0, 0, 0,0, I) and β(p)[0] = p, p ∈ P3, showing that β is an (analytic) section
for the action of G on G[p0,m] and that β takes values in G∗o. With this section one has that for each
ḡ = (a, b, c,v, h) ∈ G and p ∈ P3,

β(p)−1ḡβ(ḡ−1[p]) = (a− bp
m

, b, c +
p2

2m
b− p · a

m
,0, h).

The group SU(2) is a compact, connected, simply connected Lie group and it is well known that
all its irreducible unitary representations are of the form Dj acting on the Hilbert space C2j+1, with
j = 0, 1

2 , 1, 3
2 , 2, · · ·. Thus the (pmDj)-induced irreducible unitary representations U (m,j) of G acting on

L2(P3, dp,C2j+1) are of the form

(U (m,j)
ḡ f)(p) = ei(−p·a+

p2

2mb + mc)Dj(h) f(δ(h−1)(p−mv)),

for any f ∈ L2(P3, dp,C2j+1), p ∈ P3, ḡ = (a, b, c,v, h) ∈ G. According to the results of Section 3.3.4, the
representations U (m,j), m > 0, j = 0, 1

2 , 1, 3
2 , 2, · · · are all physically inequivalent representations arising

from the orbit classes Õ1
m, m > 0.

5.2.4 Representations arising from the orbit class Õ2
r

Consider next the orbit G[pr], and let S1 denote the unit sphere centered at the origin of P3. The function

S1 × P 3 (u, E) 7→ (ru, E, 0) ∈ G[pr]

is a diffeomorphism allowing one to identify the orbit G[pr] with the manifold S1 × P. The action of G
on G[pr] can again be transferred to an action of G on S1 × P,

(a, b, c,v, h)[(u, E)] = (δ(h)u, E + rv · δ(h)u),

where ḡ = (a, b, c,v, h) ∈ G and (u, E) ∈ S1 × P.

Let dΩ denote the unique normalized rotation invariant measure on the sphere S1 and let dE denote the
Lebesgue measure on P. The product measure dΩdE is then a G-invariant σ-finite measure on S1 × P.
The point pr of the orbit G[pr] corresponds to, the point ((0, 0, 1), 0) ∈ S1×P. To determine the stabilizer
of this point we observe that

(0, 0, 0,v, h)[((0, 0, 1), 0)] = ((0, 0, 1), 0)

if and only if δ(h) is a rotation of the sphere S1 around its south-north axis and v is of the form (v1, v2, 0).
Since

δ

(
eit/2 0

0 e−it/2

)
=




cos t sin t 0
− sin t cos t 0

0 0 1


 ,

we observe that the stability subgroup of the point ((0, 0, 1), 0) ∈ S1 × P is

A×′ E(2) = A×′ {(v, h) ∈ G∗o |v = (v1, v2, 0), v1, v2 ∈ R, h =
(

z 0
0 z−1

)
, z ∈ T}.

Consider now the function β : S1 × P→ G,
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(u, E) 7→ (0, 0, 0, E
r u, hu),

where hu ∈ SU(2) is such that δ(hu)(0, 0, 1) = u. Using the polar coordinates θ ∈ [0, π], ϕ ∈ [0, 2π) one
has

u = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

so that

hu =
(

e−iϕ/2 cos θ
2 −e−iϕ/2 sin θ

2

eiϕ/2 sin θ
2 eiϕ/2 cos θ

2

)

and thus

δ(hu) =




cos θ cos ϕ − sin ϕ sin θ cosϕ
cos θ sinϕ cos ϕ sin θ sin ϕ
− sin θ 0 cos θ


 .

Clearly, β((0, 0, 1), 0) = (0, 0, 0,0, I) and β(u, E)[((0, 0, 1), 0)] = (u, E) for all (u, E) ∈ S1 × P, showing
that σ is an (analytic) section for the action of G on the orbit G[pr] taking values in G∗o. Using the
polar coordinate representations of u, hu, and δ(hu), one may also easily compute that for any ḡ =
(a, b, c,v, h) ∈ G, (u, E) ∈ S1 × P,

σ(u, E)−1 ḡ σ(ḡ−1[(u, E)]) = (σ(u, E)−1[(a, b, c)],−v · u(0, 0, 1) + δ(h−1
u )v, h−1

u hhδ(h−1)u).

Since (δ(h−1
u )v)3 = u · v and δ(h−1

u hhδ(h−1)u)(0, 0, 1) = (0, 0, 1) one confirms that

σ(u, E)−1 ḡ σ(ḡ−1[(u, E)]) ∈ A×′ E(2)

for all ḡ = (a, b, c,v, h) ∈ G.

Let L be a unitary irreducible representation of the stability subgroup E(2) acting on a complex separable
Hilbert space K. The (prL)-induced representation U (r,L) of G acts then on L2(S1×P, dΩdE,K) according
to

(U (r,L)
ḡ f)(u, E)

= ei(Eb−p·a) L(β(u, E)−1 (v, h) β((v, h)−1[(u, E)]))f(δ(h−1)u, E − v · u),

for any f ∈ L2(S1 × P, dΩdE,K), (u, E) ∈ S1 × P, ḡ = (a, b, c,v, h) ∈ G.

To determine the representations L of E(2) we exhibit first its semidirect product structure. For v =
(v1, v2, 0) ∈ R3 we define

ξ(v) := v1 − iv2.

With this definition the product (v1, h1)(v2, h2) = (v, h) of two elements of E(2) is given by

ξ(v) = z2
1ξ(v2) + ξ(v1), h =

(
z1z2 0
0 (z1z2)−1

)
,

showing that E(2) can be identified with the semidirect product C ×′ T, with the multiplication
(ξ1, z1)(ξ2, z2) = (z2

1ξ2 + ξ1, z1z2). The action of T on C is thus given by z[ξ] = z2ξ. The irreducible
unitary representations of E(2) can thus be induced from the irreducible unitary representations of the
stability subgroups of the points of the orbits of Ĉ, the dual group of C.

For any w ∈ C, the mapping
xw(ξ) := ei Re (wξ)

is a character of the additive group of complex numbers C, and all the characters of C are of this form.
In fact, the map C → Ĉ, w 7→ xw is a group isomorphism. The (dual) action of T on Ĉ is easily seen
to be z[xw] = xz2w for all z ∈ T, w ∈ C. The orbits in Ĉ are then the singleton set {0} and the circles
Oρ := {w ∈ C | |w| = ρ} ρ > 0. In the first case the stability subgroup is T itself. To find the stability
subgroup for the case ρ > 0, fix the point w = ρ ∈ Oρ. Since z[ρ] = z2ρ = ρ if and only if z = ±1,
we observe that the stability subgroup of the point w = ρ of the orbit Oρ is the two-element group
Z2 = {1,−1}.
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Consider the orbit {0}. The unitary irreducible representations of T are the characters z 7→ zn, n ∈ Z.
The induced unitary representations L0,n of E(2) act on C as multiplications by zn, that is, L0,n

(ξ,z) = Mzn .

Consider next an orbit Oρ, ρ > 0. The invariant measure on it is the normalized arc length dϑ
2πρ , and the

irreducible unitary representations of Z2 are the trivial constant 1 representation and the one for which
1 7→ 1, −1 7→ −1. The corresponding induced representations of E(2) act on L2(Oρ,

dϑ
2πρ ,C) and they are

(L+,ρ
(ξ,z)f)(w) = ei Re (wξ)f(z−2w),

(L−,ρ
(ξ,z)f)(w) = ±ei Re (wξ)f(z−2w),

where the sign ± depends on the choice of the section c.

5.2.5 Representations arising from the orbit class Õ3

The stability subgroup of the orbit G[(0, 0, 0)] = {(0, 0, 0)} is the whole group G∗o. Let Π be a unitary
irreducible representation of G∗o acting on K. The Hilbert space of the induced representation U0,Π of G
is then L2({(0, 0, 0)}, µ(0,0,0),K) ' K and it is defined by

U0,Π
(a,b,v,h,c) f = Π(v, h)f, f ∈ K.

All the induced representations arising from the different orbits G[(0, E, 0)] in Õ(0,0,0) are physically
equivalent.

5.3 Symmetry actions in 2+1 dimensions

5.3.1 Unitary irreducible representations of G

Like in the 3+1 dimensional case the universal covering group G is a semidirect product so that we may
again apply the results of Section II. 3.4 to classify the irreducible inequivalent representations of G. Let
Â be the dual group of A. We identify Â with P4 using the pairing

〈(p, E,m), (a, b, c)〉 = −p · a + Eb + mc.

The dual action of G on Â is

g[(p, E, m)] = (δ(r)p + mv, E + δ(r)p · v +
1
2
mv 2, m),

where g = (a, b, c,v, r, x) ∈ G. We have the following orbits for the dual action.

1. For each l ∈ R, l > 0,
G[(pl, 0, 0)] = {(p, E, 0) : p 2 = l2},

where pl = (0, l).

2. For each E ∈ R,
G[(0, E, 0)] = {(E,0, 0)}.

3. For each m, Eo ∈ R, m 6= 0,

G[(0, Eo, m)] = {(p, E, m) : E − p 2

2m
= E0}.
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All the orbits are closed in Â, hence the semidirect product is regular and Theorem 4 can be applied.

The set of singleton orbits is
Âs = {(0, E, 0) : E ∈ R},

and the orbit classes of G are the following:

1. for each l ∈ R, l > 0,
Õ1

l = G[(pl, 0, 0)];

2.
Õ2 =

⋃

E∈R
G[(0, E, 0)];

3. for any m > 0,
Õ3

m =
⋃

Eo∈R

(
G[(0, Eo,m)] ∪G[(p, Eo,−m)]

)
.

In the sequel we will exploit in detail only the third case, that presents some interesting physical features.

Let m > 0 and pm = (0, 0,m) ∈ Õ3
m. The stability subgroup

Gpm ∩H = {(v, r, x) ∈ H : v = 0}

is isomorphic to R2 and its irreducible representations are its characters. Explicitly, λ, µ ∈ R define the
character of Gpm ∩H

(0, r, x) 7→ eiλxeiµr.

Now we observe that

1. if y ∈ Âs, y 6= 0, then yG[pm] 6= G[pm];

2. G[pm] 6= G[pm]−1;

3. the characters of H are of the form
(v, r, x) 7→ eiµr.

According to Theorem 4, every irreducible representation of G living on an orbit class Õpm is equivalent
to one of the form Um,λ =IndG

Gpm

(Dm,λ) where Dm,λ is the representation of Gpm

(a, b, c,0, r, x) 7→ ei(mc+λx).

Moreover, the set {Um,λ : m,λ ∈ R, m > 0} is a family of physically inequivalent representations of G.

To compute explicitly Um,λ, we observe that the orbit

G[pm] = {(p, E, m) : E − p 2

2m
= 0}

can be identified with P2 using the map

P2 3 p ←→
(
p,

p 2

2m
,m

)
∈ G[pm].

With respect to this identification the action of G on the orbit becomes

(a, b, c,v, r, x)[p] = δ(r)p + mv

so that the Lebesgue measure dp on P2 is G-invariant. We consider the section
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β : P2 → G, p 7→
(
0, 0, 0,

p
m

, 0, 0
)

for the action of G on P2. The representation Um,λ of G acts in L2(P2, dp) as
(
Um,λ

(a,b,c,v,r,x)f
)

(p) = ei( b
2m p2−p·a+mc)eiλ(x+ 1

m (v1p2−v2p1))f(δ(−r)(p−mv)).

From the explicit form of Um,λ one readily gets that the angular momentum, i.e. the selfadjoint operator
that generates the 1-parameter subgroup of rotations, has only the orbital part, so that the elementary
particles in 2 + 1 dimensions have no spin. However, they acquire a new charge λ which is not of a
space-time origin, but arises from the structure of the multipliers. If λ 6= 0, the two linear momenta do
not commute.

We add some final comments.

1. The characters of G∗ are
G∗ 3 (a, b,v, r) 7→ eiEbeiµr ∈ T,

where E, µ ∈ R. The set V of characters of K that extend to G∗ is

V = {(c,0, 0,0, 2πn, x) 7→ zn : z ∈ T} ' T.

The group V is a closed subgroup of K̂ = P2 × T and K0 = R2. Applying Corollary 5, H2(G,T) is
isomorphic to R2. In particular, any T-multiplier of G is equivalent to one of the form

( (a, b,v, R), (a′, b′,v′, R′) ) 7→ eim(v·Ra′+ 1
2 b′v2)eiλR(v1v′2−v2v′1)

where m,λ ∈ R2, v = (v1.v2) and v′ = (v′1.v′2).

2. From the explicit form of the characters of G∗ one has that, for all E, µ ∈ R, the representation

(a, b, c,v, r, x) 7→ ei(Eb+µr)Um,λ
(a,b,c,v,r,x)

is physically equivalent to Um,λ. Hence the angular momentum and the energy are both defined up
to an additive constant. For the energy this phenomenon is well known in 3 + 1 dimensions, while it
does not occur for the angular momentum.

3. The admissibility condition (3.6) gives rise to two superselection rules that do not allow superpositions
of states with different mass m or with different charge λ. However, there is no superselection rule
connected with the spin.
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6

Galilei invariant wave equations

According to the results of previous sections, a free elementary quantum object which is invariant under
the Galilei group is described by an irreducible unitary representation of the corresponding universal
central extension. The representation acts on a Hilbert space of square integrable functions over the
momentum space so that the vector states of the system are functions of the linear momentum and
energy. This description is unnatural when the object is interacting with an external field, which is a
function of space-time variables. In such a case one would like to characterise the states of the system as
solutions of wave equations, which are partial differential equations in the space-time variables. Usually
these equations are deduced from a Lagrangian which is invariant with respect to a suitable representation
of the symmetry group and the states of the system are regarded as classical (differentiable) fields. But in
doing so one hides the Hilbert structure of the theory and the mathematical problems connected with the
fact that state vectors are, in general, only square integrable and not necessarily differentiable functions.

To overcome this problem we describe in Section 6.1 vector states as vector valued distributions on
the space-time that are weak solutions of invariant local operators, called wave operators. These wave
operators are characterised by the below Theorem 5 and we use this result to describe the Galilei invariant
wave equations both in 3 + 1 and in 2 + 1 dimensions.

Section 6.2 is devoted to study the 3+1 dimensional case. For each elementary particle we find two classes
of wave equations. The first one is the usual Schrödinger equation, which is a second order differential
operator and which is not invariant with respect to the Galilei group, but only with respect to its universal
central extension. This fact reflects the true projective character of unitary representations associated
with Galilei invariant objects.

The main feature of the second class is that the wave operator is a differential operator of the first order
in the space-time variables as the Dirac equation for the relativistic electron. If the interaction with
an electromagnetic field is introduced on this latter wave equation by means of the minimal coupling
principle, the particle acquires an internal magnetic momentum with gyromagnetic ratio g = 1

j , where j
is the spin of the particle. We notice that, if one introduces the interaction on the Schrödinger equation,
one does not obtain any coupling between spin and magnetic field.

Section 6.3 describes the 2+1 dimensional wave equations. In this case there are two kinds of elementary
particles that can describe physical systems. The first one does not admit wave equations at all, whereas,
for each particles of the second class, there is essentially only one wave equation of first order and such
that the vector space where the distributions take values has minimal dimension. The particles described
by this wave equation interact with an electromagnetic field as three-dimensional spin-1/2 particles.

6.1 Wave equations

In this section we briefly recall the main results on the wave equations, following the theory developed
in paper [11].



To begin with we recall some basic definitions concerning distributions, see [22] for a full account. Given
n ∈ N, let D(Rn) be the space of C∞ functions f : Rn → C with compact support and D′(Rn) the
corresponding space of distributions, that is, the space of (continuous) linear functionals

T : D(Rn) → C, f 7→ 〈T, f〉.

We recall that any continuous function φ : Rn → C defines a distribution Tφ as

〈Tφ, f〉 =
∫

Rn

φ(x)f(x) dx,

where dx is the Lebesgue measure on Rn. In the following we identify Tφ with φ. Finally, the support of
a distribution T is defined as the smallest closed set supp T ⊆ Rn having the following property: for all
f ∈ D(Rn), if supp f ∩ supp T = ∅, then 〈T, f〉 = 0.

In order to take care of the spin of the object we have to consider vector valued distributions. For any
m ∈ N, we let D(Rn)m and D′(Rn)m be the m-fold Cartesian products of D(Rn) and D′(Rn), respectively,
and we write

〈T, f〉 :=
m∑

i=1

〈Ti, fi〉,

where T = (T1, . . . , Tm) ∈ D′(Rn)m and f = (f1, . . . , fm) ∈ D(Rn)m.

To give the definition of an invariant wave equation we replace, as usual, the Galilei group G by its
universal central extension G. The group G is a semidirect product A×′ H, where H is a Lie group and
the normal Abelian factor A is Rn, with n = 5 in 3 + 1 dimensions and n = 4 in the 2 + 1 dimensional
case.

It is natural to assume that spin is invariant with respect to translations and that it transforms according
to a representation L with respect to the action of the homogeneous part. Hence, we fix a finite dimensional
representation L of H acting on Cm.

To simplify the notation, we extend L to a representation of G in a trivial way,

L(a, h) := L(h) a ∈ Rn, h ∈ H.

We use it to define a geometric action of G on D′(Rn)m in the following way: given g ∈ G, for all
T ∈ D′(Rn)m, define ΛgT as the distribution

〈ΛgT , f〉 := 〈T, fg〉 f ∈ D(Rn)m,

where, for all f ∈ D(Rn)m,
(fg)(x) := L(g)tf(g[x]) x ∈ Rn,

and L(g)t is the transpose of the matrix L(g).

One can check that ΛgT is well defined and g 7→ Λg is a (differentiable) representation of G acting on
D′(Rn)m, see, for example, [35] for definitions.

Since Cm is a complex vector space, we can also consider the adjoint representation L∗, that is,

L∗(g) := L(g−1)∗ g ∈ G,

where L(g−1)∗ is the adjoint (transpose and complex conjugate) of L(g−1). As above, we let

〈Λ∗gT , f〉 := 〈T, fg∗〉 x ∈ Rn,

where
(fg∗)(x) := (L∗)(g)tf(g[x]) = L(g−1)f(g[x]) x ∈ Rn.

The use of the transpose matrix is motived by the following fact. If T ∈ D′(Rn)m is the function φ :
Rn → Cm and g ∈ G, then ΛgT is the function
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(ΛgT )(x) = L(g)φ(g−1[x]) x ∈ Rn,

and Λ∗gT is the function
(Λ∗gT )(x) = L∗(g)φ(g−1[x]) x ∈ Rn.

With the above background the definition of an invariant wave equation can now be given.

Definition 16. An L-invariant wave equation is a family (Di)N
i=1 of continuous operators on D′(Rn)m

satisfying the following conditions.

i) For any T ∈ D′(Rn)m and i = 1, . . . , N ,

supp DiT ⊂ supp T. (6.1)

ii) For each i = 1, . . . , N , one of the following two conditions holds:

Λg(DiT ) = Di(ΛgT ) g ∈ G, T ∈ D′(Rn)m, (6.2)
Λ∗g(DiT ) = Di(ΛgT ) g ∈ G, T ∈ D′(Rn)m. (6.3)

iii)The vector space of weak solutions of the system




D1T = 0,
. . .

DNT = 0,
(6.4)

contains a unique subspace H such that H is a Hilbert space with respect to a suitable sesquilinear
form 〈·, ·〉H, inducing a topology finer than the original one, and the action of Λ on H is invariant,
unitary and irreducible.

A continuous operator on D′(Rn)m that decreases supports, that is, has the property (6.1), and which
satisfies condition (6.2) (resp. condition (6.3) ) is called an invariant wave operator (resp. *-invariant
wave operator).

The above definition is motived by the following observations. The need to define wave equations in
terms of N wave operators is in order to take care of the fact that the group A is bigger than the physical
space-time R4 (or R3). Condition (6.1) is the requirement that the physical system be described by local
dynamical laws. Conditions (6.2) and (6.3) assure that the kernels of the operators Di are G-invariant.
In particular, the first one is natural from a geometrical point of view and the second one implies that
the formal Lagrangian functions

Li(T ) =
m∑

j=1

∫

Rn

Tj(x)(DiT )j(x) dx

are G-invariant. Finally, the system of equations (6.4) singles out exactly one elementary system, namely
the one described by the unitary irreducible representation U , where U denotes the restriction of Λ to
H. In the following, we say that the wave equation defined by the system (6.4) is associated with U .

Now we fix a G-elementary particle, described by a unitary irreducible representation U of G and we are
searching for wave equations associated with U . The following theorem gives a classification. To state the
result we wish to recall some facts. Since A is the vector space Rn, its dual is Pn = Rn.

The dual space Pn of Rn can be split into a disjoint union of orbits of a family of points {ps}s∈I ⊂ Pn, that
is, Pn = ∪s∈IG[ps], where, for s 6= t, G[ps]∩G[ps] = ∅. Moreover, every unitary irreducible representation
of G is equivalent to one of the form IndG

Gps
(ps ⊗ π), where π is an irreducible unitary representation of

Hps = Gps ∩H acting on Kπ. We denote by HomHps
(Kπ;Cm) the vector space of continuous operators

from Kπ to Cm that intertwine the representations π and L, viewed as representation of Hps .

The representation U is thus of the form U = IndG
Gp0

(p0 ⊗ τ) for some p0 ∈ Pn and some irreducible

unitary representation τ of Hp0 = Gp0 ∩H.
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Theorem 5. For any p ∈ Pn, let (M1(p), . . . ,MN (p)) be complex m×m matrices satisfying the following
conditions

1. for all i = 1, . . . , N , the map p 7→ Mi(p) is polynomial;

2. for each i = 1, . . . , N , one of the following two conditions is satisfied,

L(h)Mi(h−1[p])L(h−1) = Mi(p) (6.5)
L(h)∗Mi(h−1[p])L(h−1) = Mi(p) (6.6)

for all h ∈ H and p ∈ Pn;

3. there is unique, up to a constant, B ∈ HomHp0
(Kτ ;Cm), B 6= 0, such that

Mi(p0)B = 0

for all i = 1, . . . , N ;

4. for any irreducible representation IndG
Gps

(ps ⊗ π) not unitarily equivalent to U and for all B ∈
HomHps

(Kπ;Cm), B 6= 0, there exists an i = 1, . . . , N, such that

Mi(ps)B 6= 0.

For all i = 1, . . . , N , define the operators Di as

〈DiT , f〉 := 〈T,F−1M t
iFf〉, (6.7)

where T ∈ D′(Rn)m, f ∈ D(Rn)m and F is the Fourier transform. The operators (D1, . . . , DN ) are an
L-invariant wave equations associated with U .

The above theorem holds under two technical assumptions, which are always satisfied for the Galilei
groups. First of all, the G-invariant measure ν on the orbit G[p0] defines a tempered distribution Tν by
means of

〈Tν , f〉 :=
∫

G[p0]

f(x) dν(x),

see [22] for definitions. Moreover the representation L is at most of polynomial growth on G[p0] , that is,

‖L(β(p))‖ ≤ C(1 + |p|k) p ∈ G[p0],

where C > 0 and k ∈ N are suitable constants, |p| is the Euclidean norm of p, ‖L(β(p))‖ is the usual
matrix norm and β is a section from G[p0] to H.

The proof of this result uses in a deep way the theory of quasi-invariant distributions, [7]. The reader
may wish to consult [11] for a proof. Here we stress only the following facts.

Remark 5. The condition that IndG
Gps

(ps ⊗ π) is not unitarily equivalent to U implies that either ps 6= p0

or, if ps = p0, π is not equivalent to τ .

Remark 6. Equation (6.5) implies that, for all s ∈ I, M(ps) ∈ HomHps
(Cm;Cm) and Eq.( 6.6) that

M(ps) ∈ HomHp(Cm; (Cm)∗), where (Cm)∗ denotes the vector space Cm endowed with the representation
adjoint to L. In both cases, M(ps) defines uniquely M(p) on the corresponding orbit G[ps].

The condition in item (3) of Theorem 5 implies that the space HomHp0
(Kτ ;Cm) is non-zero and this

is equivalent to the fact that L restricted to Hp0 contains τ as a subrepresentation. In the same way,
condition in item (4) has to be checked only for representations π that are contained in L.
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We close this section with some further observations. Since the unitary equivalence is stronger than the
physical equivalence, the equivalence class of U is not uniquely defined by the quantum system and,
hence, we can obtain different wave equations associated with the same elementary particle. This is not
surprising since, for instance, the Hamiltonian operator is defined only up to a constant and hence also
the Schrödinger equation. Obviously, the physical content of the theory has to be the same in all those
cases.

Due to the fact that the matrices Mi(p) are polynomial in p, F−1M tFf is in D(Rn)m for all f ∈ D(Rn)m,
so that Equation (6.7) is well defined and it implies that the wave operators Di are finite order differential
operators with constant coefficients, that is,

Di =
∑

ν

Cν
∂

∂ν1x1 . . . ∂νnxn
,

where ν = (ν1, . . . , νn) is an integer multi-index and Cν are constant m×m complex matrices. Moreover,
since Di are differential operators, one can also prove [11] that the vector states of the elementary particle,
which are solutions of the wave equation, are in fact tempered distributions. Finally, the degree of the
polynomial Mi(p) defines the order of the differential operator Di. It is always possible to reduce the order
of the corresponding differential equation DiT = 0 by adding auxiliary degrees of freedom, nevertheless,
in general, one obtains wave operators that do not satisfy Eq. (6.2) or Eq. (6.3). Therefore, it is of interest
to find representations L of H admitting wave equation given by first order differential operators. In this
case we say that the wave equation is of Dirac type.

In paper [11], the following stronger result is proved. If the two technical assumptions mentioned after
Theorem 5 hold for every orbit G[ps], s ∈ I, then, every L-invariant wave equation (D1, . . . , DN ) is of
the form given by Theorem 5.

6.2 The 3 + 1 dimensional case

From Chapter 5 we know that the free elementary Galilei objects in 3 + 1 dimensions having physical
meaning are describe by mass and spin. Thus we fix the mass m0 > 0 and the spin j with 2j ∈ N and we
search for the wave equations associated with U (m0,j) = IndG

Gp0
(p0 ⊗ Dj), where p0 = (0, 0,m0) and Dj

is the representation of SU(2) acting on C2j+1, see Section 5.2.3 of Chapter 5 for the notations.

We define the Fourier transform between A = R5 and Â = P5 in a such way that it gives the following
correspondence between the multiplicative operators on D′(P5) and the differential operators on D′(R5):

p ↔ i∇
E ↔ −i

∂

∂t

c ↔ −i
∂

∂ξ
.

The first step is to select a finite-dimensional representation L of H. In the final section of this chapter
we shall briefly present a method to obtain finite-dimensional representations of H. To choose among
them, we can consider two different kinds of constraints. The first one is that the vector space carrying
the representation L has a minimal dimension. On the other hand, we can require the wave equation to
be of the Dirac type.

We consider the first case. Let Dj be the irreducible representation of SU(2) acting on C2j+1, and extend
it to a representation Lj of H in a trivial way, that is, Lj(v, h) = Dj(h). Define the mappings M1 and
M2 from P5 into the space of (2j + 1)× (2j + 1) matrices as

M1(p, E, m) = (m−m0)I2j+1

M2(p, E, m) = (2mE − p 2)I2j+1.
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One can easily check that M1 and M2 satisfy all the conditions of Theorem 5. Using relation (6.7), one
obtains the explicit form of the corresponding wave operators (D1, D2):

D1 = (i
∂

∂ξ
−m0)I2j+1

D2 =
(
−2

∂2

∂ξ∂t
+ ∇2

)
I2j+1.

To show that the equations are the usual Schrödinger equation, consider a function φ ∈ C∞(R5,C2j+1)
such that

{
D1φ = 0
D2φ = 0 ,

in the sense of a distribution. From the first equation it follows that that

φ(x, t, ξ) = e−im0ξψ(x, t)

where ψ is in C∞(R4,C2j+1) and from the second equation one gets that ψ satisfies the Schrödinger
equation

i
∂ψ

∂t
(x, t) = − 1

2m0
∇2ψ(x, t).

One has to consider two differential operators in order to assure the correct invariant property of the
wave equation (it is well known that the Schrödinger equation is not Galilei invariant). Moreover it is
clear that the dimension of C2j+1 is minimal.

Now we address the problem of finding a wave equation of the Dirac type. We consider first the case
j > 1

2 . Let Lj be the representation of H, acting on

V j = C2j−1 ⊕ C2j+1 ⊕ C2j+1,

given by

Lj(v, h) =



Dj−1(h) 0 v ·T(j−1)jDj(h)

0 Dj(h) v ·HjDj(h)
0 0 Dj(h)


 (6.8)

with v ∈ V, h ∈ SU(2) and the matrices T (j−1)j and Hj are introduced in the below Section 6.4. We
notice that dim V j = 6j + 1.

Let D1 and D2 be the differential operators

D1 = (i
∂

∂ξ
−m0)I6j+1

D2 = i




I2j−1
∂
∂ξ 0 T(j−1)j ·∇

0 I2j+1
∂
∂ξ Hj ·∇

(T(j−1)j)∗ ·∇ Hj ·∇ 2j2I2j+1
∂
∂t .




The above wave equation coincides, at least formally, with the one found by Hurley with Lagrangian
methods, [23]. Applying Theorem 5 one has the following result.

Proposition 11. The set (D1, D2) is a Dirac type Lj-invariant wave equation associated with the Galilean
elementary particle of mass m0 and spin j.

Proof. Using the notation of Theorem 5, we have that p0 = (0, 0,m0), Gp0 ∩ H = SU(2), τ = Dj and
Kτ = C2j+1. Moreover, the orbit G[p0] is isomorphic to P3 and, under this isomorphism, the invariant
measure ν on G[p0] is the Lebesgue measure that defines clearly a tempered distribution. Finally, the
representation Lj is at most of polynomial growth on the orbit G[p0]. Indeed, using the section

G[p0] 3 (p, E, m) 7→ (
p

m0
, e) ∈ H
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one has that
∥∥∥Lj( p

m0
, e)

∥∥∥ ≤ (1 + C|p|2), where C is a suitable constant. Theorem 5 can thus be applied.

Define two functions M1 and M2 from P5 to the space of (6j + 1)× (6j + 1) matrices as

M1(p, E, m) = (m−m0)I6j+1

M2(p, E, m) =




mI2j−1 0 −p ·T(j−1)j

0 mI2j+1 −p ·Hj

−p · (T(j−1)j)∗ −p ·Hj 2j2EI2j+1.




One can easily check that, for all T ∈ D′(R5)6j+1 and f ∈ D(R5)6j+1,

〈DiT , f〉 = 〈T,F−1M t
iFf〉, i = 1, 2.

Obviously the maps M1 and M2 are polynomials with maximal degree 1 and M1 satisfies Equation (6.5).
We now show that M2 satisfies Equation (6.6). Indeed, it is enough to verify this on the set

Ω = {(p, E, m) ∈ P5 : m 6= 0},
which is dense in P5. By means of an explicit computation one has that for all (p, E,m) ∈ Ω,

(p, E, m) = (
p
m

, e)[(m,0, E − p 2

2m
)].

Moreover, define for all a, b ∈ R the matrix

∆(a, b) :=




aI2j−1 0 0
0 aI2j+1 0
0 0 2j2bI2j+1


 .

The matrix ∆(a, b) is in the commuting ring of the restriction of Lj to SU(2) (observe that if h ∈ SU(2),
then (Lj)∗(h) = Lj(h)). Finally, for all (p, E, m) ∈ Ω,

M2(p, E,m) = (Lj)∗((
p
m

, e))∆(m,E − p2

2m
)(Lj)((− p

m
, e)),

where we use the below Equation (6.12) to linearise the term proportional to p 2

2m .

We now show that the conditions (3) of Theorem 5 are satisfied. Indeed, let B ∈ HomSU(2)(C2j+1;C6j+1).
Then B is of the form

B(w) = (0, βw, αw) ∈ C2j−1 ⊕ C2j+1 ⊕ C2j+1,

where α, β ∈ C. Since M1(p0) = 0, obviously M1(p0)B = 0, whereas, by an explicit computation, the
condition M2(p0)B = 0 is equivalent to β = 0. Hence, there is a unique B 6= 0, up to a constant, satisfying
condition (3).

Consider now condition (4). Let ps = (0, ε, m) ∈ P5 and π an irreducible unitary representation of
Gps ∩H = SU(2) such that

IndG
Gps

(p⊗ π) is not equivalent to IndR5×′SU(2)(p0 ⊗ Dj), (6.9)

then, taking into account Remark 5,

1. if m 6= m0, then M1(ps) = (m −m0)I6j+1 is clearly invertible, so that if B ∈ HomHps
(Kπ;C6j+1),

B 6= 0, then M1(ps)B 6= 0

2. if m = m0, then

a) if ε 6= 0,

M2(ps) =




m0I2j−1 0 0
0 m0I2j+1 0
0 0 2j2εI2j+1,




which is invertible, and, as above, we can conclude that the relation (4) holds with i = 2.
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b) if ε = 0, then, by Equation (6.9), π = Dj′ with j′ 6= j. Moreover, the fact that

HomHSU(2)(Kps ;C6j+1) 6= {0},

implies that j′ = j − 1 and that the range of B is contained in the subspace C2j−1 ⊕ {0} ⊕ {0}.
Hence M2(ps)B 6= 0 if B 6= 0. ut

For j = 1
2 the vector space C2j−1 reduces to the zero vector and the matrices T(j−1)j are the zero

matrices, so that the wave operator D2 is given by

D2 = i

(
I2

∂
∂ξ H

1
2 ·∇

H
1
2 ·∇ 1

2I2
∂
∂t

)
.

This was found for the first time by Lévy-Leblond, [25]. The main difference with the case j ≥ 1 is
that D2 is both *-invariant and invariant. From the mathematical point of view this phenomenon is a
consequence of the fact that the matrices H

1
2 , which are proportional to the Pauli matrices, satisfy also

the anticommutation relations
H

1
2
i H

1
2
j + H

1
2
j H

1
2
i =

1
2
δij .

The case j = 0 requires small modifications. Let L0 be the representation of H acting on C3 ⊕ C given
by

L0(v, h) =
(

δ(h) v
0 1

)
,

where v ∈ V and h ∈ SU(2). Let D1 and D2 be the differential operators

D1 = (i
∂

∂ξ
−m0)I4

D2 = i

(
I3

∂
∂ξ ∇

∇ 2 ∂
∂t

)
.

The proof that (D1, D2) is a Dirac type wave equation for the spinless particle of mass m0 is the same as
the one of Proposition 11. Observe that in this case D2 is a *-invariant wave operator and the dimension
of the vector space carrying the representation is 4.

6.2.1 The gyromagnetic ratio

In the previous section we proved that with each elementary particle of mass m0 and spin j there is
associated an L-invariant Dirac type wave equation (D1, D2). We now introduce the interaction of the
particle with a given external electromagnetic field (E,B). We stress that (E,B) are not dynamical
variables and, obviously, can destroy the Galilei invariance. The interaction will be introduced on the free
wave equation by means of the minimal coupling principle. Taking into account that the variable ξ has
no physical meaning the prescription of the minimal coupling is

−i∇ 7→ −iD := −i∇− qA(x, t)

i
∂

∂t
7→ iD4 := i

∂

∂t
− qV (x, t)

i
∂

∂ξ
7→ iD5 := i

∂

∂ξ
,

where V and A are potentials defined by (E,B) and q is the electric charge. In doing so, for j > 0, the
wave equation becomes

Dint
1 = (iD5 −m0)I6j+1

Dint
2 =




iI2j−1D5 0 iT(j−1)j ·D
0 iI2j+1D5 iHj ·D

(T(j−1)j)∗ ·D iHj ·D 2j2iI2j+1D4.


 .
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To explain the meaning of this equation, suppose that Φ is a smooth function from R5 to C6j+1 satisfying

Dint
1 Φ = 0 and Dint

2 Φ = 0,

in the sense of a distribution. From first equation it follows that

Φ(x, t, ξ) = e−im0ξφ(x, t)

Writing φ = (ω, χ, ψ) with ψ and χ taking values in C2j+1 and ω in C2j−1, the second equation gives

m0ω + iT(j−1)j ·Dψ = 0
im0χ + iHj ·Dψ = 0

i(T(j−1)j)∗ ·Dω + iHj ·Dχ + 2j2iD4ψ = 0.

Solving these four equations in terms of φ, using Equation (6.12) to compute the expression HaHb +
(T (j−1)j

a )∗T (j−1)j
b , and using the commutation relations

[Da,Db] = −iqεabcBc a, b, c = 1, 2, 3,

one has (
i
∂

∂t
− qV (x, t)− 1

2m0
(i∇ + qA(x, t))2 +

q

2jm0
Hj ·B(x, t)

)
ψ(x, t) = 0. (6.10)

The physical interpretation of this equation suggests that a quantum particle with spin j interacting
with an electromagnetic field acquires an intrinsic magnetic momentum with gyromagnetic ratio g = 1

j ,
as deduced by Hurley, [23]. Although the form of the interaction between the particle and the electro-
magnetic field has its root in the relativistic framework, Equation (6.10) follows from Galilean covariance
requirements, as soon as one assumes the minimal coupling principle and the fact that the wave equation
is of the Dirac type.

The case j = 0 can be treated with similar calculations. The result is that the wave equation for the
scalar component is the usual wave equation for a spinless particle in the electromagnetic field.

6.3 The 2 + 1 dimensional case

From Section 5.3 of Chapter 5 we know that the elementary free particles in 2+1 dimension are described
by irreducible unitary representations of the universal covering group G of the Galilei group of the form

Um,λ = IndG
Gpm

(pm ×Dm,λ),

where pm = (0, 0, m), Gpm = R4 ×′ ({0} × R2) and Dm,λ is the (scalar) representation of Gpm given by

(a, b, c,0, r, x) 7→ ei(mc+λx).

We show that, if λ 6= 0, there are no wave equations associated with Um,λ. Indeed, from Condition (3)
of Theorem 5, with p0 = pm and τ = Dm,λ, it follows that the representation L of H, restricted to the
stability subgroup {0} × R2, has to contain the character

(0, r, x) 7→ eiλx

as a subrepresentation. Due to the following Lemma, this condition implies that λ = 0.

Lemma 12. Let L be a finite dimensional representation of H, then for all x ∈ R, L(0, 0, x) is a unipotent
operator.
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Proof. Let Lie (H) = R2⊕R⊕R be the Lie algebra of H and (e1, e2, e3, e4) the canonical basis. Define L̂

as the differential of L, which is a Lie algebra representation of Lie (H). Let l be an eigenvalue of L̂(e4)
and W the corresponding eigenspace. Since [e1, e4] = [e2, e4] = 0, it follows that L̂(e1) and L̂(e2) leave
invariant W , but [e1, e2] = e4, so that L̂(e4) restricted to W has null trace and, hence, l = 0. ut

For fixed m 6= 0, we are thus looking for wave equations associated with Um,0. Since we are interested in
coupling the particle with an external electromagnetic field, we choose the representation L of the group
H in such a way that there are L-invariant Dirac type wave equations.

Let L be the representation of H acting on V = C2 as

L±(v, r, x) =
(

e±ir (vx ± ivy)
0 1

)
.

As a consequence of Theorem 5, the following result is obtained.

Corollary 6. Given m 6= 0, let D1 and D2 be the following differential operators

D1 = (i
∂

∂ξ
−m)I2

D2 = i

(
∂
∂ξ ( ∂

∂x ± i ∂
∂y )

( ∂
∂x ∓ i ∂

∂y ) 2( ∂
∂t − ε0)

)
.

Then (D1, D2) is an L±-invariant wave equation of the Dirac type.

The proof of the above corollary is very similar to that of Proposition 11 and we omit it. In paper [11], it
is also shown that the above wave equations are unique, if one requires the dimension of the space, where
L acts, to be at most 2.

If the interaction with a given external electromagnetic field (E, Bz) is again introduced by the minimal
coupling, the computations of Section 6.2.1 can be repeated to yield the equation

(
i
∂

∂t
− qV (x, t)− 1

2m
(i∇ + qA(x, t))2 ∓ q

2m
Bz(x, t)

)
φ(x, t) = 0, (6.11)

where φ is a smooth function from R3 to C.

From a physical point of view, comparing Equation (6.11) with the corresponding three dimensional
equation (6.10), we see that the two dimensional elementary particles of mass m (recall that λ = 0)
interact with the electromagnetic field as three dimensional spin-1/2 particles with spin down (L+-
invariant wave equations) or spin up ( L−-invariant wave equations). Notice that, since the spin of a
2 + 1 dimensional particle has no physical meaning (in particular for the representation Um,0 is zero),
the gyromagnetic ratio can not be defined.

We stress that this result depends on the minimal assumption on the dimension of the vector space
carrying the representation L and it will have to be checked experimentally. This minimal hypothesis in
the choice of L holds also for the relativistic Dirac equation whose nonrelativistic limit gives rise to the
known gyromagnetic ratio 1

j .

6.4 Finite dimensional representations of the Euclidean group

To close our treatise we consider the finite dimensional continuous representations of the covering group
E(3)∗ of the Euclidean group E(3) in three dimensions. The group E(3)∗ is given by the semidirect
product of the vector group R3 and the Lie group SU(2) acting on R3 in the usual way. It is evident that
E(3)∗ coincides with the homogeneous factor H of the universal central extension of the Galilei group in
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3+1 dimensions, as define in Section 4.1 of Chapter 4. Finite dimensional representations are needed in
constructing Galilei invariant wave equations. Hence, in the following, let H = E(3)∗.

Since H is simply-connected, its finite dimensional representations are in one to one correspondence with
the representations of its Lie algebra. One has that Lie (H) is the semidirect sum of the Abelian Lie algebra
R3 and the simple Lie algebra su(2). Due to the fact that Lie (H) is neither compact nor semisimple, it is
very difficult to obtain a complete classification of the representations of Lie (H). Nevertheless George and
Lévy-Nahas, [17], reduce the problem to the one of solving a non-linear matrix equation, see relation (6.13)
below. In the following we briefly describe their results.

Let H = (H1,H2,H3) be the usual basis of su(2) and denote the elements of Lie (H) as (v, l), with
v, l ∈ R3, instead of (v, l ·H).

For each j ∈ 1
2N, let dj be the irreducible representation of su(2) labeled by j and let

Hj =
(
idj(H1), idj(H2), idj(H3)

)

be the corresponding Hermitian generators.

For all j, k ∈ 1
2N, the dimension of the vector space

W 1,k,j := HomSU(2)(R3;L(C2j+1,C2k+1))

is one if |k − j| ≤ 1, whereas it is zero in the other cases. Hence, let T kj ∈ W 1,k,j be normalized in such
way that

Tjj = Hj

Tj(j−1) = (T(j−1)j)∗

(6.12)
v1 ·Hjv2 ·Hj + v1 · (Tj(j−1))∗v2 ·T(j−1)j = i j(v1 ∧ v2) ·Hj + j2v1 · v2,

where v · T(j−1)j := T (j−1)j(v). The explicit form of the matrices T(j−1)j can be found in [16]. The
relation (6.12) is fundamental for the problem of finding a Dirac type wave equation.

Let ρ be a finite dimensional representation of Lie (H). One can prove, [17], that ρ can be written, in a
suitable basis, in upper triangular block form of the type:

ρ(v, l) =




ρ1(l) f̃12(v) . . . f̃1n(v)
0 ρ2(l) . . . f̃2n(v)
...

...
. . .

...
0 0 . . . ρn(l)


 .

The blocks on the diagonal are given by

ρp(l) = ⊕j(Iñjp
⊗ (l ·Hj))

where ñjp is the multiplicity of the j-representation in the p-block. The off-diagonal blocks are of the
form, with p < q,

f̃pq(v) = (f̃ij,pq(v))ij = (Mij,pq ⊗ v ·Tij)ij

where Mij,pq are ñip× ñjq matrices. One has to determine these matrices in a such way that the following
non linear equation holds ∑

k

γijkMikMkj = 0 (6.13)

where Mij = (Mij,pq)pq is a block matrix (
∑

p ñip ×
∑

q ñjq) whose elements are the matrices Mij,pq

(Mij,pq = 0 if p ≥ q), and γijk are known coefficients that can be found in [17]. We notice that in the
case ñip = 1 for all i, p, the matrices Mij,pq are reduced to scalars.

Applying this technique, one obtains the representation Lj introduced by relation (6.8), with 2j ∈ N,
j ≥ 1

2 .
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A

Appendix

A.1 Dictionary of Mathematical Notions

This dictionary gives the definitions and the basic properties of most of the mathematical concepts which
are freely used in the book. No references are given since the material is standard. In this Appendix H is
a complex separable Hilbert space (see the corresponding item below).

Absolute value of an operator. The absolute value |A| of an operator A ∈ B is the unique positive
operator |A| ∈ B such that |A|2 = A∗A.

Adjoint of an operator. The adjoint of an operator A ∈ B is the unique operator A∗ ∈ B such
that 〈A∗ϕ, ψ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H. The map B 3 A 7→ A∗ ∈ B is an antilinear map such that
(A∗)∗ = A, ‖A∗‖ = ‖A‖ and ‖A∗A‖ = ‖A‖2, that is, B is a C∗-algebra.

Analytic function. Let M be an analytic manifold. A function f : M → R is analytic at the point
p ∈ M if there is a chart (U,ϕ) of M such that p ∈ U and f ◦ ϕ−1 : ϕ(U) → R is real analytic. The set
of analytic functions on M at the point p is a real vector space and we denote it by F(p).

Antilinear operator. An additive map A : H → H for which A(cϕ) = c̄Aϕ for all ϕ ∈ H and c ∈ C
(where c̄ denotes the complex conjugate of c) is an antilinear operator.

Antiunitary operator. A bounded antilinear operator U is antiunitary if UU∗ = U∗U = I, that is, if
U∗ = U−1. The antiunitary operators are the bijective antilinear functions U : H → H which reverse
the inner product, 〈Uϕ, Uψ〉 = 〈ψ,ϕ〉 for all ϕ,ψ ∈ H. An antilinear U is antiunitary if and only if it is
an isometry and a surjection. We let U denote the set of all antiunitary operators on H. The product
of two antiunitary operators is unitary. The set U can be equipped by the norm topology as well as by
the strong and weak operator topologies. In particular, the strong and weak operator topologies coincide
(cp. unitary operators).

Atoms of D. An atom of the set D is an element P ∈ D for which the condition O ≤ D ≤ P , D ∈ D,
implies that either D = O or D = P . They are exactly the one-dimensional projections on H. Any D ∈ D
is the least upper bound of the atoms contained in it, D = ∨P≤DP . Since H is separable, any D can be
expressed as the least upper bound of at most countably many atoms contained in D (cp. weak atom).

Borel measure. Let X be a lcsc space. The Borel σ-algebra B(X) of X is the σ-algebra of subsets of
X generated by its open sets. A measure µ : B(X) → [0,∞] which is finite on the compact sets is called
a Borel measure on X. Any Borel measure on X is necessarily σ-finite, that is, X can be expressed as a
countable union of disjoint sets En ∈ B(X) for which µ(En) < ∞, and regular, that is, for any E ∈ B(X),
µ(E) = sup{µ(K) |K ⊂ E compact} = inf{µ(O) |E ⊂ O open}.
Bounded antilinear operator. An antilinear operator A is bounded if there is a constant M ∈ [0,∞)
such that ‖Aϕ‖ ≤ M ‖ϕ‖ for all ϕ ∈ H. The norm of a bounded antilinear operator A is given as
‖A‖ := sup {‖Aϕ‖ |ϕ ∈ H, ‖ϕ‖ ≤ 1} (< ∞). The adjoint A∗ of an antilinear operator A is the unique
antilinear operator for which 〈ψ, A∗ϕ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H.



Bounded operator. A linear operator A : H → H is a bounded (linear) operator if there is a constant
M ∈ [0,∞) such that ‖Aϕ‖ ≤ M ‖ϕ‖ for all ϕ ∈ H. The existence of such a constant is equivalent to the
continuity of A. We let B denote the set of all linear bounded operators on H. If H is to be emphasized,
we denote it as B(H).

Character. A character of a lcsc group G is a continuous (group) homomorphism G → T. The set of
characters of G is a group under the pointwise multiplication. When G is an Abelian group the group
of characters of G is denoted by Ĝ and is called the dual group of G. The group Ĝ is a lcsc group with
respect to topology of the uniform convergence on compact sets.

Compact selfadjoint operator. An operator A ∈ B is compact if the closure of the set {Aϕ | ‖ϕ‖ ≤ 1}
is compact. The spectral structure of compact selfadjoint operators is particularly simple. Indeed, if A is
a compact selfadjoint operator, then A can be expressed as a norm convergent series (or as a finite sum)
A =

∑
n λnPn, where λn 6= 0 for each n, Pn is a nonzero projection (of finite rank) for each n, PnPm = 0

for n 6= m, and λn 6= λm for n 6= m. Moreover, the set of numbers λn in the formula A =
∑

n λnPn is
the set σ(A) \ {0}, where σ(A) is the spectrum of A, and limn→∞ λn = 0, provided that the numbers λn

are infinitely many.

Connected component. A component of a point x of a lcsc space X is the union of all connected
subspaces of X containing x. If x is the identity element e of a lcsc group G and Ge is the connected
component of e then, Ge is a closed normal subgroup of G.

Connected group. A topological group is connected if it is connected as a topological space, that is,

if it is not the union of two nonempty open disjoint subsets. A topological subgroup is connected if it is
connected with respect to the relative topology.

Cauchy-Schwarz inequality. The Cauchy-Schwarz inequality states that, for any two vectors ϕ, ψ ∈ H,

|〈ϕ,ψ〉| ≤ ‖ϕ‖ ‖ψ‖ .

Equality of operators. Given two operators A,B ∈ B, acting on a complex Hilbert space H, A = B if
and only if 〈ϕ,Aϕ〉 = 〈ϕ,Bϕ〉 for all ϕ ∈ H.

Exponential map. Let G be a Lie group. The exponential map exp is the unique analytic map from
Lie (G) to G such that

1. for all X ∈ Lie (G), the map
R 3 t → exp(tX)

is a group homomorphism of the real additive line into G;

2. for all X ∈ Lie (G) and f ∈ F(G),

d f(exp(tX)
dt |t=0

= X(f).

In particular, if G is a matrix group, so that X ∈ Lie (X) is a matrix, then

exp(X) =
∞∑

n=0

1
n!

Xn.

Fréchet-Riesz theorem. The Fréchet-Riesz theorem assures that for each bounded linear functional
f : H → C there is a unique ψ ∈ H such that f(ϕ) = 〈ψ, ϕ〉 for all ϕ ∈ H.

G-space. Let G be a lcsc group. A lcsc space X is called a (lcsc) G-space if G acts on X by means of a
continuous map, called action

G×X 3 (g, x) 7→ g[x] ∈ X
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such that

e[x] = x for all x ∈ X

(g1g2)[x] = g1[g2[x]] for all g1, g2 ∈ G, x ∈ X.

In particular, for each g ∈ G the mapping X 3 x 7→ g[x] ∈ X is a homeomorphism.

Let x ∈ X. The set Gx = {g ∈ G | g[x] = x} is a closed subgroup of G, the stability subgroup at x, and
the set G[x] = {g[x] ∈ X | g ∈ G} is the orbit of the point x.

Haar measure. Let G be a lcsc group. A left [resp. right] Haar measure on G is a Borel measure which
is invariant with respect to the left [resp. right] action of G on itself given by

g[h] := gh for all g, h ∈ G ( resp. [h]g := hg ).

A theorem of Andrè Weil assures that left and right Haar measures exist and are unique up to a positive
multiplicative constant. If the left Haar measure is also right invariant, the group is called unimodular.
The Galilei group and its universal extension both in 3 + 1 and 2 + 1 dimensions are unimodular.

Hilbert basis. A (Hilbert) basis (ξn)n∈I is a collection of mutually orthogonal vectors in H, 〈ξn, ξm〉 =
δn,m for all n,m ∈ I, such that their closed linear span lin {ξn} = H. Moreover, for all ϕ ∈ H, it holds

ϕ =
∑

n∈I
〈ξn, ϕ〉ξn Fourier series

‖ϕ‖2 =
∑

n∈I
|〈ξn, ϕ〉|2 Parseval formula.

The cardinality of the index set I is the dimension of H. Since H is separable, I is either a finite set or
countable.

Hilbert space. A complex Hilbert space H is a vector space H over C with an inner product 〈·, ·〉, linear
in the second argument, such that H is complete with respect to the norm

‖ϕ‖ :=
√
〈ϕ,ϕ〉 ϕ ∈ H.

A Hilbert space H is separable if it has a countable dense subset. In this book by Hilbert space we mean
a complex separable Hilbert space.

Invariant measure. Let X be a G-space. If µ is a Borel measure on X then the image measure g(µ) of
µ under the mapping x 7→ g[x] is defined as

g(µ)(E) = µ({x : g[x] ∈ E})

for each E ∈ B(X). In an equivalent way, g(µ) can be defined by the equality
∫

X

f(x)dg(µ)(x) =
∫

X

f(g[x])dµ(x)

for all f ∈ Cc(X), where Cc(X) is the set of continuous functions with compact support.

The measure µ is called invariant if µ = g(µ) for all g ∈ G. The invariance of µ is equivalent with any of
the following conditions:

a) µ(E) = g(µ)(E) for all E ∈ B(X);

b) µ(K) = g(µ)(K) for all K ⊂ X compact;

c)
∫

X
f(g[x])dµ(x) =

∫
X

f(x)dµ(x) for all f ∈ Cc(X).

If G is a unimodular and X is a transitive G-space such that the stability subgroup is also unimodular,
then X admits an invariant measure, unique up to a positive multiplicative constant.
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Irreducible unitary representation. A unitary representation U of a group G acting on H is irre-
ducible if the null space and the whole space are the only invariant closed subspaces. The Schur lemma
assures that U is irreducible if and only if the only operators in B commuting with all Ug, g ∈ G, are the
ones proportional to the identity.

Lcsc space and group. A topological Hausdorff space is called locally compact second countable (lcsc)
if each point has a compact neighborhood and it satisfies the second axiom of countability. A lcsc group
is a topological Hausdorff group with a lcsc topology.

Lie algebra. A (real) Lie algebra g is a vector space over R endowed with an antisymmetric bilinear
mapping (Lie bracket) g× g 3 (X, Y ) 7→ [X,Y ] ∈ g satisfying the Jacobi identity,

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Lie algebra homomorphism. Let g1 and g2 be two Lie algebras. A (Lie algebra) homomorphism
f : g1 → g2 is a linear function which preserves the Lie bracket, that is,

[f(X), f(Y )]2 = f ([X, Y ]1) .

An isomorphism of Lie algebras is a bijective homomorphism.

Lie algebra of a Lie group. Let G be a Lie group G. A vector field X ∈ D1(G) is left invariant if the
following condition holds. For all g ∈ G and f ∈ F(G),

X(fg) = X(f)g

where fg is the function defined by fg(h) = f(g−1h), for all h ∈ G.

Left invariant vector fields form a subalgebra Lie (G) of the Lie algebra D1(G) and Lie (G) is called the
Lie algebra of G. A standard result of the theory of Lie groups assures that Lie (G) is isomorphic to the
tangent space Te(G) of G at the identity e by means of

Lie (G) 3 X 7→ Xe ∈ Te(G).

In particular, Lie (G) is a finite dimensional vector space.

Lie Group. A lcsc group G is a (real) Lie group if there is a (real) analytic structure on the set G,
compatible with its topology, which converts it into a (real analytic) manifold and for which the group
operations (g, h) 7→ gh and g 7→ g−1 are analytic. If G is a Lie group, then G, as a topological group, is
an lcsc group.

Lie group homomorphism. Let G1 and G2 be two Lie groups. A (Lie group) homomorphism π : G1 →
G2 is a group homomorphism which is also an analytic mapping of the manifold underlying G1 into the
manifold underlying G2. A (Lie group) isomorphism is a bijective Lie group homomorphism such that
the inverse is a Lie group homomorphism, too.

A Lie group homomorphism π : G1 → G2 defines a Lie algebra homomorphism π̇ : Lie (G1) → Lie (G2)
defined in the following way. Given X ∈ Lie (G1), π̇(X) is the left invariant vector field on G2

F(G2) 37→ X(f ◦ π).

The following converse result holds.

Theorem 6. Let G1 and G2 be connected Lie groups and f : Lie (G1) → Lie (G2) a Lie algebra ho-
momorphism. If G1 is simply connected, then there exist one and only one Lie group homomorphism
π : G1 → G2 such that π̇ = f .

Lie groups and Lie algebras: main theorems. There are two results due to Sophus Lie about the
structure of Lie groups.
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Theorem 7. Let g be a Lie algebra. Then there is a connected, simply connected Lie group whose Lie
algebra is isomorphic to g.

Theorem 8. Let G1 and G2 be Lie groups and Lie (G1) and Lie (G2) the corresponding Lie algebras.
Then Lie (G1) and Lie (G2) are isomorphic if and only if G1 and G2 are locally analytically isomorphic,
that is, if there exist two open neighborhoods U1 and U2 of the identities in G1 and G2 and an analytic
diffeomorphism f of U1 onto U2 such that for any g, h ∈ U1 we have that gh ∈ U1 if and only if
f(g)f(h) ∈ U2 and, if this is the case, f(gh) = f(g)f(h).

Lie subgroup. Let G be a Lie group of dimension n. An (algebraic) subgroup H of G is called a Lie
subgroup (of dimension m < n) if the following condition holds: for all h0 ∈ H, there is a chart (U,ϕ)
of G such that h0 ∈ U , ϕ(h0) = 0 and ϕ(U ∩ H) is the intersection of the open set ϕ(U) ⊂ Rn and
an m-dimensional vectorial subspace of Rn. In this case, there is on H a unique real analytic structure
compatible with the relative topology such that H is a Lie group and the canonical immersion i : H → G
is analytic.

A Lie subgroup H is always a closed subgroup of G and its Lie algebra Lie (H) is a Lie subalgebra of
Lie (G). Conversely, any closed subgroup of G is a Lie subgroup. We notice that in the literature there
are different not equivalent definitions of Lie subgroup. Our definition is strong enough to assure that a
Lie subgroup is always closed in G, compare with the definition of regularly embedded Lie subgroup of
[39].

Manifold. Let M be a lcsc space. A chart of M is a pair (U,ϕ), where U is an open set of M and ϕ is a
homeomorphism of U onto an open subset of Rn for some n. The number n is the dimension of the chart.
Different charts on M have the same dimension. A real analytic structure on M is a set {(Ui, ϕi) | i ∈ I},
I an index set, where for each i ∈ I, the pair (Ui, ϕi) is a chart of dimension n on M such that ∪iUi = M
and for each i, j ∈ I the map ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a real analytic function. We say
that M is a (real analytic) manifold of dimension n if a real analytic structure is defined on M .

Measurable function. Let X and Y two lcsc space. A map f : X → Y is called measurable if, for all
E ∈ B(Y ), f−1(E) ∈ B(X).

Norm of an operator. Let A ∈ B be an operator. The norm of A is defined as ‖A‖ := sup {‖Aϕ‖ |ϕ ∈
H, ‖ϕ‖ ≤ 1} and it satisfies ‖AB‖ ≤ ‖A‖ ‖B‖, for all A,B ∈ B, that is, B is a Banach algebra.

One-dimensional projection. A projection P is one-dimensional projection if it is a projection on

a one-dimensional subspace of H. If ϕ ∈ H, ϕ 6= 0, then P = P [ϕ], where P [ϕ]ψ := 〈ϕ,ψ〉
〈ϕ,ϕ〉ϕ, for all

ψ ∈ H. Clearly, P [ϕ] = P [ψ] if and only if ϕ = cψ for some c ∈ C, c 6= 0. We let P denote the set of all
one-dimensional projections.

Operator order. For any A, B ∈ B we write A ≤ B, and say that A is contained in B, if B − A is
positive. The relation ≤ is an order on B, and it makes B a partially ordered vector space. We recall that
B is an antilattice, that is, any two elements A, B ∈ B have the greatest lower bound A ∧B in B if and
only if A and B are comparable, that is, either A ≤ B or B ≤ A.

Orthogonal vectors. Two vectors ϕ,ψ ∈ H are orthogonal, ϕ ⊥ ψ, if 〈ϕ,ψ〉 = 0, and a set K ⊂ H is
orthonormal if the vectors ϕ ∈ K are mutually orthogonal unit vectors.

Polarization identity. The polarization identity 〈ϕ,ψ〉 = 1
4

∑3
n=0 in ‖ψ + inϕ‖, ϕ,ψ ∈ H, connects the

inner product and the norm of a Hilbert space H.

Positive operator. An element A ∈ B is positive, A ≥ O, if 〈ϕ, Aϕ〉 ≥ 0 for all ϕ ∈ H. Positive operators
are selfadjoint. We let B+, or, equivalently, B+

r , denote the set of all positive operators on H.

Projection operator and the projection lattice. An operator D ∈ B is a projection if D = D2 = D∗.
We let D denote the set of all projections on H. When the order on B is restricted on D, D gains the
structure of a complete lattice with the zero operator O and the unit operator I as the order bounds,
O ≤ D ≤ I for all D ∈ D. The map D 7→ D⊥ := I −D is an orthocomplementation and it turns D into
a complete orthocomplemented orthomodular lattice.
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Projections and closed subspaces. The set D of projections on H stands in one to one onto corre-
spondence with the set M of closed subspaces of H. If D ∈ D, then its range D(H) := {Dϕ |ϕ ∈ H}
is a closed subspace. On the other hand, if M ⊆ H is a closed subspace, then H = M ⊕ M⊥, where
M⊥ := {ψ ∈ H |ψ ⊥ ξ for all ξ ∈ M}. Hence, each ϕ ∈ H can uniquely be expressed as ϕ = ϕM + ϕM⊥ ,
with ϕM ∈ M , ϕM⊥ ∈ M⊥. Then DM : ϕ 7→ ϕM is a projection, with DM (H) = M . The cor-
respondence D 7→ D(H), or, inversely, M 7→ DM , is a bijection, and it preserves both the order
(D1 ≤ D2 ⇔ D1(H) ⊆ D2(H)) and the orthocomplementation (D(H)⊥ = D⊥(H)).

Quotient space. Let G be a lcsc group and H a closed subgroup. The quotient space G/H is the set of
equivalence classes of G with respect to the following relation

g1 ∼ g2 ⇐⇒ there is an h ∈ H such that g2 = g1h

The quotient space G/H, endowed with the quotient topology, is a transitive G-space with respect to the
action

g1[ġ] = ˙g1g, g ∈ G, ġ ∈ G/H

where ġ denotes the equivalence class of g. In particular the stability subgroup at ė is H.

Section. Let G be a lcsc group and X a transitive G-space. Let xo ∈ X, a section is a map c : X → G
such that c(xo) = e and c(x)[xo] = x for all x ∈ G[xo]. A result of George Mackey assures that there
exists always a measurable section.

Selfadjoint operator. An operator A ∈ B is called selfadjoint if A∗ = A or, equivalently, if 〈ϕ,Aϕ〉 ∈ R
for all ϕ ∈ H. We let Br denote the set of all selfadjoint operators on H. If A ∈ Br there is a spectral
measures ΠA : B(R) → B such that ΠA([−‖A‖ , ‖A‖]) = I and , for any ϕ ∈ H,

〈ϕ,Aϕ〉 =
∫

R
x dΠA

ϕ,ϕ(x).

Semidirect product. Let A,H be two Lie groups and assume that H acts on A in such a way that

1. for all h ∈ H, the map a 7→ h[a] is a group homomorphism;

2. the map (a, h) 7→ h[a] from A×H to A is analytic.

The product manifold G = A×H becomes a Lie group with respect to the composition law

(a, h)(a′, h) := (ah[a′]), hh′) (a, h), (a′, h′) ∈ A×H, (A.1)

The group G is called the semidirect product of A and H and it is denoted by A×′ H. The groups A and
H are canonically identified with closed subgroups of G is such a way that

A ∩H = {e} (A.2)
AH = G (A.3)

hAh−1 ⊂ A. (A.4)

(Equivalently, Eq. A.4 says that A is a normal subgroup of G). Conversely, given a Lie groups G and two
closed subgroups A and H such that Eqs. A.2-A.4 hold, then G is (isomorphic to) the semidirect product
of A and H with respect to the canonical action of H on A given by

h[a] = hah−1,

which is the inner action.

Simply connected group. Let X be a manifold. A path is a continuous map p : [0, 1] → X. The
space X is said to be simply connected if the following condition holds. For all paths p and q such that
p(0) = q(0) = x and p(1) = q(1) = y there is a continuous map Ξ : [0, 1]× [0, 1] → X such that
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Ξ(0, t) = p(t) t ∈ [0, 1]
Ξ(1, t) = q(t) t ∈ [0, 1]
Ξ(s, 0) = x s ∈ [0, 1]
Ξ(s, 1) = y s ∈ [0, 1].

A Lie group is simply connected if it is simply connected as a manifold.

Spectral measure. A (real) spectral measure (or projection valued measure) is a map Π from the Borel
σ-algebra B(R) of the real line R into the set B of bounded operators on H such that

Π(X) ∈ D for all X ∈ B(R),
Π(R) = I,

Π(∪iXi) =
∑

i

Π(Xi),

for all sequences (Xi)i∈I of disjoint sets in B(R) (with the series converging in the strong, or equivalently,
in the weak operator topology). Equivalently, a map Π : B(R) → D is a spectral measure if for each unit
vector ϕ ∈ H, the map X 7→ 〈ϕ,Π(X)ϕ〉 =: Πϕ,ϕ is a probability measure.

Strong operator topology. The strong operator topology on B is the weakest topology with respect to
which all the functions B 3 A 7→ Aϕ ∈ H, ϕ ∈ H, are continuous. A net (Ai)i∈I of bounded operators
converges to an operator A ∈ B strongly if lim Aiϕ = Aϕ for all ϕ ∈ H.

Tangent space. Let M be a real manifold of dimension n and p ∈ M . A tangent vector at p is a linear
map L : F(p) → R which is also a derivation, that is, L(fg) = L(f) g(p) + f(p)L(g) for all f, g ∈ F(p).

Topological group. A set G is a topological group if it is an abstract group and a topological space with
the Hausdorff topology such that the group operations (g, h) 7→ gh and g 7→ g−1 are continuous.

Topology on U. The set U of unitary operators is a closed subset of B in the weak operator topology.
However, when restricted on U the weak and strong operator topologies coincide.

Torus T. Let T = {z ∈ C | |z| = 1} denote the set of complex numbers of modulus one. It is a multiplica-
tive Lie group. We call it the phase group or the torus.

Trace class operators. An operator T ∈ B is of trace class if there is a basis K of H such that∑
ξ∈K 〈ξ, |T |ξ〉 < ∞, where |T | is the absolute value of T . We let B1 denote the set of all trace class

operators on H. If T ∈ B1, the series
∑

ϕ∈K 〈ϕ, Tϕ〉 is absolutely convergent and the number tr
[
T

]
:=∑

ϕ∈K 〈ϕ, Tϕ〉 is the trace of T ∈ B1 (the definition of trace class operator and trace is independent of the
choice of the basis K). The trace is a linear functional on B1 and tr

[
AT

]
= tr

[
TA

]
for any A ∈ B, T ∈ B1

(this means that B1 is a ∗-ideal of B).

Trace norm. The function T 7→ ‖T‖1 := tr
[|T |] is a norm, the trace norm on B1, and it turns B1 into

a Banach space. For any A ∈ B, T ∈ B1, |tr
[
AT

]| ≤ ‖A‖ ‖T‖1 and ‖T‖ ≤ ‖T‖1. The dual space B∗
1

of (B1, ‖·‖1) is isometrically isomorphic with the Banach space (B, ‖·‖), the duality being given by the
function B 3 A 7→ fA ∈ B∗

1, where the functional fA is defined by the formula fA(T ) := tr
[
AT

]
for all

T ∈ B1.

Transitive G-space. Let G be a lcsc group and X be a G-space. If for each x, y ∈ X there is a g ∈ G
such that g[x] = y, we say that X is a transitive G-space. If x ∈ X, then the orbit G[x] = G and the
map G/Gx 3 ġ 7→ g[x] ∈ X is a homeomorphism of G-space, where Gx is the stability subgroup of G and
G/Gx is the quotient space.

Vector field. Let M be a manifold. A (real analytic) vector field on M is a map p 7→ Xp that assigns
to each point p ∈ M a tangent vector Xp at the point p such that, for all f ∈ F(p), the function
M 3 p 7→ Xp(f) ∈ R is analytic.

Given a vector field X on M , the map X : F(M) → F(M) given by

X (f)(p) = Xp(f), p ∈ M, f ∈ F
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defines a derivation, that is, a linear map on F(M) such that

X (fg) = X (f)g + fX (g), f, g ∈ F(M).

Conversely, any derivation on F(M) is of the above form and the correspondence between vector fields
and derivation is one to one. The set of all vector fields (or derivation) is a real vector space denoted by
D1(M) that becomes a Lie algebra with respect to the following Lie brackets: if X, Y ∈ D1(M), [X, Y ]
is the vector field given by

f 7→ [X, Y ](f) := X(Y (f))− Y (X(f)).

von Neumann theorem. The following result is due to John von Neumann.

Lemma 13. Let G be a lcsc group and M a second countable topological group. Let m : G → M be a
group homomorphism. Then m is continuous if and only if it is measurable.

Unit vector. We say that ϕ ∈ H is a unit vector if ‖ϕ‖ = 1.

Unitary operator. An operator U ∈ B is unitary if one of the following equivalent conditions is satisfied

1. UU∗ = U∗U = I;

2. U is bijective and 〈Uϕ, Uψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ H, that is U−1 = U∗;

3. U is surjective and ‖Uϕ‖ = ‖ϕ‖ for all ϕ ∈ H.

We let U denote the set of all unitary operators on H. See Section A.2 of Appendix A.1 for further
details.

Unitarily equivalent representations. Unitary representations U and U ′ of G in Hilbert spaces H
and H′, respectively, are unitarily equivalent if there is a (linear) isometric isomorphism V : H → H′
which intertwines the representations, that is, V Ug = U ′

gV for all g ∈ G.

Unitary representation. Let G be a lcsc group. A unitary representation of G in H is a map G 3 g 7→
Ug ∈ U such that

1. Ue = I;

2. Ug1g2 = Ug1Ug2 for all g1, g2 ∈ G;

3. the map g 7→ Ug is continuous from G into U endowed with the strong (or, equivalently, weak)
topology.

Lemma 13 and Proposition 12 of A.2 implies that g 7→ Ug is continuous if and only if, for all ϕ,ψ ∈ H,
the function G 3 g 7→ 〈ϕ,Ugψ〉 ∈ C is measurable.

Universal covering group. Let G be a connected Lie group. There is unique (up to an isomorphism)
simply connected Lie group G∗ and a (Lie group) surjective homomorphism δ : G∗ → G such that the
kernel of δ is a discrete central closed subgroup of G∗. The group G∗ is called universal covering group
and δ the covering homomorphism.

Upper and lower bounds of operators. Let C ⊂ Br. We say that C is bounded from above if it
has an upper bound, that is, a B ∈ B such that C ≤ B for all C ∈ C. If B0 is an upper bound of
C and B0 ≤ B whenever B is an upper bound of C, then B0 is the least upper bound, and we denote
B0 = supC, or B0 = ∨C. Similarly, one defines a lower bound and the greatest lower bound inf C, or ∧C.
Let (Ai)i∈I ⊂ Br be an increasing net, that is, Ai ≥ Aj , when i ≥ j. If the set {Ai | i ∈ I} is bounded
from above, then it has the least upper bound A. Moreover, the net (Ai)i∈I converges to A both weakly
and strongly. A similar statement holds for decreasing nets which are bounded from below.
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Weak atom. An element λP , 0 ≤ λ ≤ 1, P ∈ P, is called a weak atom of the set of unit bounded positive
operators O ≤ E ≤ I and any such operator E can be expressed as the join of the weak atoms contained
in it, that is, E = ∨λP≤EλP (cp. atoms of D).

Weak operator topology. The weak operator topology is the weakest topology on B for which all the
functions B 3 A 7→ 〈ϕ,Aψ〉 ∈ C, ϕ,ψ ∈ H, are continuous. A net (Ai)i∈I of bounded operators converges
to an operator A ∈ B weakly if lim 〈ϕ,Aiψ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H.

A.2 The group of automorphisms of a Hilbert space

In this appendix we briefly recall the mathematical properties of the set Aut (H) of automorphisms of
a Hilbert space H. We recall that an automorphisms U of H is either a unitary operator or antiunitary
ones, that is, Aut (H) = U ∪U.

The main properties are stated by the following proposition, whose proof is the same as the one of
Lemma 5.34 and Lemma 5.4 of [36].

Proposition 12. The set Aut (H) is a group with respect to the usual composition between operators and
it becomes a second countable metrisable topological group with respect to the strong operator topology.
In particular, U is the connected component of the identity of Aut (H). Finally, for a Borel space X, a
function f : X → U ∪U is measurable if and only if for all ϕ, ψ ∈ H the map X 3 x 7→ 〈ϕ, f(x)ψ〉 ∈ C
is a measurable function.

We define T := {zI | z ∈ T}. Clearly T is a closed central subgroup of Aut (H) and it can be identified
with the phase group T.

Let Σ be the quotient group Aut (H)/T. Its elements are the equivalence classes

[U ] := {U ′ ∈ Aut (H) |U ′ = zU for some z ∈ T}
and we let π : Aut (H) → Σ,U 7→ π(U) := [U ] be the canonical projection.

We endow Σ with the quotient topology (we recall that Ξ ⊂ Σ is open if and only if π−1(Ξ) is open
in Aut (H)). The following corollary summarizes the basic properties of Σ and its proof is an easy
consequence of the above proposition.

Corollary 7. The group Σ is a second countable metrisable topological group and its connected component
Σ0 of the identity is U/T. In particular, π is a continuous open group homomorphism.

Finally, we recall that a function s : Σ0 → U is a section for the canonical projection π : U → Σ0 if
π ◦ s = [I]. If s is also a measurable function, it is called a measurable section.

The following result will be frequently used in the sequel, see Theorem 7.4 of [36]:

Proposition 13. There is a measurable section s : Σ0 → U for the canonical projection π such that s
continuous in a neighborhood of the identity and s([I]) = I.

A.3 Induced representation.

Here we briefly recall the definition of induced representation for semidirect products with normal Abelian
factor and its main properties (we refer to [36] for the proof).

Let G be a Lie group such that G is semidirect product of A and H where the normal factor A is Abelian.
The dual group Â of A has a natural structure of a manifold that converts it into a Lie group.
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The action of G on A, a 7→ g[a] = gag−1, induces an action of G on Â, x 7→ g[x], which is defined through
the following formula:

g[x](a) := x(g−1[a]), a ∈ A, x ∈ Â, g ∈ G. (A.5)

This action splits Â into the orbits G[x] := {g[x] | g ∈ G} of its points x ∈ Â.

To simplify the exposition, we assume that each orbit of Â is locally closed (that is, the semidirect product
is regular ) and there is a G-invariant measure on each orbit.

Given x0 ∈ Â, let
Gxo = {g ∈ G | g[xo] = xo}

denote the stability subgroups at x0 and

Sxo = Gxo ∩H.

so that Gxo = A×′ Sxo . Let µ an G-invariant measure on the orbit G[x0].

Given a unitary representation D of Sxo acting on a Hilbert space K, define the unitary representation
xoD of Gxo

as
(xoD)(ah) = xo(a)D(h) (A.6)

that acts on the same Hilbert space K.

We are now ready to define the unitary representation of G unitarily induced by xoD.

Let H be the Hilbert space L2(G[xo], µ,K) and fix a measurable section for the action of G on G[xo].

For each g ∈ G we define the map Ug acting on L2(G[xo], µ,K) as

(Ugf)(x) := (xoD)(c(x)−1gc(g−1[x]))f(g−1[x]), (A.7)

where f ∈ L2(G[xo], µ,K).

One has that g 7→ Ug is a unitary representation of G, which is denoted by U = Ind G
Gxo

(xoD).

We observe that since g = ah and the action of A on Â is trivial, that is, a[x] = x for all x ∈ Â, we may
choose the section c such that it take values on H only, that is, c(x) ∈ H for all x ∈ G[xo]. With this
choice U takes the following form for any g = ah:

(Uahf)(x) := x(a)D(c(x)−1hc(h−1[x]))f(h−1[x]), (A.8)

The following fundamental results concerning the above construction, known as the Mackey Machine, are
then obtained [36]:

Theorem 9. 1) The induced representation Ind G
Gxo

(xoD) is irreducible if and only if D is irreducible.
2) Two induced representations Ind G

Gxo
(xoD) and Ind G

Gx1
(x1D) of G are unitarily equivalent if and only

if there is an h ∈ H such that Gxo = hGx1h
−1 and the inducing representations g 7→ (xoDo)(hgh−1)

and g 7→ (x1D1)(g) of Gx1 are unitarily equivalent. 3) Each unitary irreducible representation of G in a
Hilbert space is equivalent to an induced one.
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List of Frequently Occurring Symbols

1. Sets of Numbers
N = {0, 1, 2, . . .} 54
R real numbers 7
C complex numbers 2
T = {z ∈ C | |z| = 1} 6, 71

2. Hilbert space notations

H complex separable Hilbert space 2, 67
ϕ, ψ, . . . elements of H
〈·, ·〉 inner product of H 2, 67
[ϕ] = {cϕ | c ∈ C} 2
P [ϕ] projection on [ϕ] 2
M = {M ⊂ H | M closed subspace} 12
dim(M) dimension of M ∈ M

3. Sets of Operators on H

B bounded operators 2, 66
Br = {A ∈ B | A∗ = A} bounded selfadjoint operators 70
B+

r = {A ∈ Br | A ≥ O} bounded positive operators 69
B1 trace class operators 2, 71
B1,r = {T ∈ B1 | T ∗ = T} 6
B+

1,r = {T ∈ B1,r | T ≥ O} 6
U = {U ∈ B | U−1 = U∗} unitary operators 6, 72
U antiunitary operators 7, 65
T = {zI | z ∈ T} 13
S = {T ∈ B1 | T ≥ O, tr[T ] = 1} state operators 2
E = {E ∈ B | O ≤ E ≤ I} effect operators 3
D = {D ∈ B | D2 = D∗ = D} projection operators 3, 69
P = {P ∈ D | dim P (H) = 1} 2, 69

4. Groups of automorphisms

Aut (S) state automorphisms 5
Auts(P) superposition automorphisms 7
Aut (P) vector state automorphisms 7
Aut0(P) transition propability zero preserving

bijective functions p : P → P 7
Aut(E) effect automorphisms 11



Auto(E) effect ⊥-order automorphisms 8
Auts(E) effect sum automorphisms 8
Autc(E) effect convex automorphisms 8
Aut (D) D-automorphisms 10
Aut (H) = U ∪U 13, 73
Σ = U ∪U/T 13, 73
Σ0 = U/T 73
Σ(H,H′) 20

5. Some mappings

π : U ∪U → Σ canonical projection 18
π : U → Σ0 canonical projection 20
s : Σ → U ∪U a section for π : U ∪U → Σ 18
s : Σ0 → U a section for π : U → Σ0 20
σ : G → Σ a symmetry action 19
σ : G → Σ0 a (unitary) symmetry action 20
τ : H ×H → A an A-multiplier of H 21
z : G×G → T a T-multiplier of G 22
τF : H ×H → Rn an Rn-multiplier of H associated with

a closed Rn-form F 23
F : Lie (H)× Lie (H) → Rn a closed Rn-form 22
δ : G∗ → G covering homomorphism 23
ρ : G → G ρ(v, g∗) := δ(g∗) 24
c : G → G a section for ρ 25

6. Groups

G a symmetry group 21
G∗ covering group of G 21
G universal central extension of G 24
G = A×′ H semidirect product 30
A normal closed Abelian subgroup of G 30
H closed subgroup of G 30
g = (a, h) ∈ G an element of G 30
Â dual group of A 30
Gx stability subgroup of G at x ∈ Â 30
G[x] orbit corresponding to Gx 30
ν G-invariant σ-finite measure on G[x] 30
K Hilbert space 30
L2(G[x], ν,K) Hilbert space of functions 30
D representation of Gx ∩H acting in K 30
xD representation of Gx defined by

(xD)ah = xaDh 30
U = IndG

Gx
(xD) representation of G induced by xD 30
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H2(G,T) quotient group corresponding to the group of
T-multipliers of G 22

H2(G∗,R) vector space of the equivalence classes of
the R-multipliers of G∗ 23

H2(G∗,R)δ a subspace of H2(G∗,R) 23
Lie (H) Lie algebra of H 22
H2(Lie (H),Rn) quotient space corresponding to the set of

closed Rn-forms 23

7. Notations related to the Galilei group in 3 + 1 dimensions

V := (R3,+) velocity transformations 35
SO(3) rotations in R3 35
Go := V ×′ SO(3) homogenous Galilei group 35
(v, R) ∈ G0 an element of G0

SU(2) covering group of SO(3) 36
G∗0 = V ×′ SU(2) covering group of G0

(v, h) ∈ G∗0 an element of G∗0
Ts := (R3,+) space translations 35
Tt := (R,+) time translations 35
T := Ts × Tt

(a, b) ∈ T an element of T
G := T ×′ Go Galilei group 35
g = (a, b,v, R) a Galilei transformation 35
G∗ = T ×′ G∗o covering group of G 36
g∗ = (a, b,v, h) an element of G∗

δ((a, b,v, h)) = (a, b,v, δ(h)) covering homomorphism G∗ → G 36
G = R5 ×′ (V ×′ SU(2)) universal central extension of G 40
ḡ = (a, b, c,v, h) an element of G 45
Lie (T ) = R4 Lie algebra of T 36
Lie (V) = R3 Lie algebra of V 36
Lie (SO(3)) = so (3) Lie algebra of SO(3) 36
Lie (G0) = R3 ⊕ so (3) Lie algebra of G0 37
Lie (G) = R4 ⊕ R3 ⊕ so (3) Lie algebra of G 37
Lie (G∗) = R4 ⊕ R3 ⊕ su (2) Lie algebra of G∗ 37
Lie (G) =
R⊕ (Lie (T )⊕ (Lie (V)⊕ su (2))) Lie algebra of G 38

8. Miscellaneous

DF (t1, t2) the time evolution operator of the frame F 43
Pn the dual group of the additive

group Rn, n = 2, 3, 4, 5 45
≤ order on Br

⊥ E 3 E 7→ E⊥ := I − E ∈ E
∨ least upper bound w. r. t. ≤
∧ greatest lower bound w. r. t. ≤
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Index

A-multiplier, 21
equivalent, 22
exact, 22

G-space, 66
transitive, 71

action, 66
geometric, 54

algebraic charge, 24
analytic function, 65
atom, 65

weak, 73
automorphism

D-automorphism, 10
effect ⊥-order, 8
effect convex, 8
effect sum, 8
Hilbert space, 13
quantum mechanics, 18
state, 5
superposition, 7
vector state, 7

Borel measure, 65

Cauchy-Schwarz inequality, 66
central extension, 24
character, 66
closed Rn-form, 22

exact, 22
closed subspaces, 70
connected component, 66
covering group, 21

of the Galilei group, 36

derivation, 72
distribution, 54

tempered, 56
dynamical evolution, 43
dynamical state, 43

elementary physical system, 20
elementary system, 44
exponential map, 66

Fréchet-Riesz theorem, 66

Galilean relativity, 44

Galilei group, 35
homogeneous, 35

gyromagnetic ratio, 61

Haar measure, 67
Hilbert basis, 67
Hilbert space, 67

invariant measure, 67
isolated system, 44

Lie algebra, 68
homomorphism, 68
of a Lie group, 68
of the covering group of the Galilei group, 37

Lie group, 68
homomorphism, 68
subgroup, 69

Lie theorem, 68
local dynamical laws, 55

Mackey machine, 74
manifold, 69
measurable function, 69
multiplier, 21

non isolated system, 44
norm of an operator, 69

observable, 4
operator, 66

absolute value, 65
adjoint, 65
antilinear, 65
antiunitary, 65
compact, 66
effect, 3
equality, 66
local, 53
order, 69
positive, 69
projection, 3, 69

one-dimensional, 69
selfadjoint, 70
trace class, 71
unitary, 72
upper and lower bound, 72



orbit, 30, 67
class, 30

orthogonal vectors, 69

polarization, 69

quotient space, 70

relativity principle, 43, 44
representation

admissible, 24
at most of polynomial growth on G[p0], 56
equivalent, 72
induced, 32, 73, 74
irreducible, 68
physically equivalent, 24
projective, 21
unitary, 72

Schur lemma, 68
section, 25, 30, 70
semidirect product

normal subgroup, 70
regular, 74

spectral measure, 71
spin, 51, 62
stability subgroup, 30, 67
state, 2

mixture, 2
pure, 2
superposition, 2
vector, 2

superselection rule, 25
symmetry action, 19

equivalent, 20

irreducible, 20

tangent space, 71
temporal evolution, 33
topological charge, 24
topological group, 71

connected, 66
lcsc, 68
simply connected, 70

topology
of U, 71
strong operator topology, 71
weak operator topology, 73

torus, 71
trace norm, 71

unit vector, 72
universal central extension, 24
universal covering group, 72

covering homomorphism, 72

vector field, 71
left invariant, 68

von Neumann theorem, 72

wave equation, 53
L-invariant, 55
associated, 55
Dirac type, 57
free, 60

wave operator
*-invariant, 55
invariant, 55

Wigner theorem, 13
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