-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
44 lines (35 loc) · 1.31 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import os
from data.test_dataset import TestDataset
from torch.utils.data import DataLoader
from util.util import dice_coef
import segmentation_models_pytorch as smp
import sys
experiment_name = sys.argv[1]
base_path = "/polyp-data/TestDataset"
dataset_names = ["CVC-300", "CVC-ClinicDB", "CVC-ColonDB", "ETIS-LaribPolypDB", "Kvasir"]
iou = smp.utils.metrics.IoU()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load segmentation model
model_path = '/cut/checkpoints/{}/S_best.pth'.format(experiment_name)
model = torch.load(model_path)
model = model.to(device)
model.eval()
for dataset_name in dataset_names:
target_dataset = os.path.join(base_path, dataset_name)
test_data = TestDataset(target_dataset)
test_dataloader = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=8)
total = 0
total_iou = 0
total_dice = 0
with torch.no_grad():
for image, mask in test_dataloader:
image = image.to(device)
mask = mask.to(device)
pred = model(image)
dice = dice_coef(mask.cpu(),pred.cpu())
l = iou(pred,mask).item()
total_iou+= l
total_dice+=dice
total+=1
print(dataset_name, ' - Mean DICE:', total_dice/total, ' - Mean IOU:', total_iou/total)