-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGilbert_Kittel_Antarctic_ice_shelf_SMB.py
778 lines (713 loc) · 48.7 KB
/
Gilbert_Kittel_Antarctic_ice_shelf_SMB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
''' Script for processing and visualising Antarctic surface mass balance data from model projections.
Author: Ella Gilbert, 2020.
Dependencies:
- python 3
- cartopy 0.18.0
- iris 2.2
'''
# Define host HPC where script is running
host = 'hd'
# Define host-specific filepath and location of additional python tool scripts
import sys
if host == 'jasmin':
filepath = '/gws/nopw/j04/bas_climate/users/ellgil82/AntSMB/MAR/'
sys.path.append('/gws/nopw/j04/bas_climate/users/ellgil82/scripts/Tools/')
elif host == 'bsl':
filepath = '/data/mac/ellgil82/AntSMB/MAR/'
sys.path.append('/users/ellgil82/scripts/Tools/')
elif host == 'rdg':
filepath = '/home/users/ke923690/AntSMB/'
sys.path.append('/home/users/ke923690/Python\ Scripts/Tools/')
elif host == 'hd':
filepath = 'D:\\Data\\AntSMB\\MAR\\'
sys.path.append('C:/Users/Ella/OneDrive - University of Reading/Scripts/Tools/')
import iris
import numpy as np
import matplotlib.pyplot as plt
import iris.analysis.cartography
import iris.coord_categorisation
from divg_temp_colourmap import shiftedColorMap
import matplotlib
import pandas as pd
from matplotlib.lines import Line2D
# Isolate region of interest ('' for whole continent)
region = input("Which region are you interested in? \n\nPress enter for whole continent\n"
"Enter \"WA\" for West Antarctica\nEnter \"EA\" for East Antarctica\n"
"Enter \"AP\" for Antarctic Peninsula.\n\nSo, what will it be?\n\n")#region = '' #'AP'
def load_sims():
''' Load data for region of interest ('' for whole continent).
Inputs:
- region: iris constraint to limit loading.
Outputs:
- dict_list: list of dictionaries (one for each GCM) containing the three variables of interest, as simulated by MAR forced by each
GCM.
- stats: dictionary of invariant variables (orograph, latitude etc.)
- masks: dictionary of masks for relevant areas (shelves and grounded ice).'''
ACCESS_dict = {}
CNRM_dict = {}
NOR_dict = {}
CESM_dict = {}
dict_list = {'ACCESS1.3': ACCESS_dict, 'CESM2': CESM_dict, 'NorESM1-M': NOR_dict, 'CNRM-CM6-1': CNRM_dict}
for i, j in enumerate(['ACCESS1.3', 'CESM2', 'NorESM1-M', 'CNRM-CM6-1']):
try:
dict_list[j]['RU'] = iris.load_cube(filepath + 'RU_MAR_'+ j +'_rcp8.5_future.nc')
dict_list[j]['ME'] = iris.load_cube(filepath + 'ME_MAR_' + j + '_rcp8.5_future.nc')
dict_list[j]['SMB'] = iris.load_cube(filepath + 'SMB_MAR_' + j + '_rcp8.5_future.nc')
dict_list[j]['SF'] = iris.load_cube(filepath + 'SF_MAR_' + j + '_rcp8.5_future.nc')
dict_list[j]['RF'] = iris.load_cube(filepath + 'RF_MAR_' + j + '_rcp8.5_future.nc')
dict_list[j]['TT'] = iris.load_cube(filepath + 'TT_MAR_' + j + '_rcp8.5_future.nc')
except:
dict_list[j]['RU'] = iris.load_cube(filepath + 'RU_MAR_'+ j +'_ssp585_future.nc')
dict_list[j]['ME'] = iris.load_cube(filepath + 'ME_MAR_' + j + '_ssp585_future.nc')
dict_list[j]['SMB'] = iris.load_cube(filepath + 'SMB_MAR_' + j + '_ssp585_future.nc')
dict_list[j]['SF'] = iris.load_cube(filepath + 'SF_MAR_' + j + '_ssp585_future.nc')
dict_list[j]['RF'] = iris.load_cube(filepath + 'RF_MAR_' + j + '_ssp585_future.nc')
dict_list[j]['TT'] = iris.load_cube(filepath + 'TT_MAR_' + j + '_ssp585_future.nc')
for k in ['RU', 'ME', 'SMB']:
dict_list[j][k] = dict_list[j][k][:,0,:,:]
iris.coord_categorisation.add_year(dict_list[j][k], 'time', name='year')
dict_list[j][k] = dict_list[j][k].aggregated_by(['year'], iris.analysis.SUM) # return as annual sum
for k in ['RF', 'SF']:
iris.coord_categorisation.add_year(dict_list[j][k], 'time', name='year')
dict_list[j][k] = dict_list[j][k].aggregated_by(['year'], iris.analysis.SUM) # return as annual sum
dict_list[j]['TT'] = dict_list[j]['TT'][:,0,:,:]
iris.coord_categorisation.add_year(dict_list[j]['TT'], 'time', name='year')
dict_list[j]['TT'] = dict_list[j]['TT'].aggregated_by(['year'], iris.analysis.MEAN) # return as mean
# Load invariant data
grd_ice = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Grounded ice')
continent = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'IF SOL3 EQ 4 THEN 1 ELSE 0')
ice_mask = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Ice mask (if mw=2)')
orog = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Surface height')
lon = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Longitude')
lat = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Latitude')
rignot = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Rignot bassins')
grid_area = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Area')
rock = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Rock')
# Create dictionary of variables for later use
stats = {'grd_ice': grd_ice, 'continent': continent, 'ice_mask': ice_mask, 'orog': orog, 'lat': lat, 'lon': lon,
'rignot': rignot, 'grid_area': grid_area, 'rock': rock}
# Create masks
ice = np.ma.masked_less(stats['ice_mask'].data, 30) # mask areas with < 30% ice coverage
ais = np.ma.masked_equal(stats['continent'].data, 0) # mask areas of ocean
ice_msk = ais * ice * stats['grid_area'].data / 100 # mask non-ice, non-land grid points and multiply by grid area to find true area
grd = np.ma.masked_less(stats['grd_ice'].data, 30)
grd_msk = ais * grd * stats['grid_area'].data / 100 # mask non-ice, non-grounded ice grid points and multiply by grid area to find true area
grounded_mask = grd * ais
grounded_mask[grounded_mask >= 30] = 1
#shf_msk = np.ma.masked_where((grd_msk.data > 50) & (rock.data > 30), ice_msk)
shf = np.ma.masked_greater(stats['grd_ice'].data, 50)
shf_msk = ais * shf
shf_msk = np.ma.masked_where(stats['rock'].data > 30, shf_msk)
shelf_mask = ~shf_msk.mask # Shelf areas are = 1
masks = {'shelf': shelf_mask, 'grounded': grounded_mask, 'ais': ais}
return dict_list, masks, stats
dict_list, masks, stats = load_sims()
AIS_dict_list = dict_list.copy()
AIS_masks = masks.copy()
AIS_stats = stats.copy()
if region == 'AP':
for m in dict_list.keys():
for k in ['RU', 'ME', 'SMB', 'TT', 'SF', 'RF']:
dict_list[m][k] = dict_list[m][k][:, 80:120, :50]
for k in stats.keys():
stats[k] = stats[k][80:120, :50]
for n in masks.keys():
masks[n] = masks[n][80:120, :50]
elif region == 'WA':
for m in dict_list.keys():
for k in ['RU', 'ME', 'SMB', 'TT', 'SF', 'RF']:
dict_list[m][k] = dict_list[m][k][:, 20:78, 30:97]
for k in stats.keys():
stats[k] = stats[k][20:78, 30:97]
for n in masks.keys():
masks[n] = masks[n][20:78, 30:97]
elif region == 'EA':
for k in stats.keys():
stats[k] = stats[k][:, 67:]
for k in stats.keys():
stats[k].data[30:65, :35] = 0
for n in masks.keys():
masks[n] = masks[n][:, 67:]
masks[n][30:65, :35] = 0
for m in dict_list.keys():
for k in ['RU', 'ME', 'SMB', 'TT', 'SF', 'RF']:
dict_list[m][k] = dict_list[m][k][:, :, 67:]
dict_list[m][k].data[:, 30:65, :35] = 0
def runoff_dur():
''' Load dictionary of runoff duration for each GCM'''
ACCESS_melt = {}
CNRM_melt = {}
NOR_melt = {}
CESM_melt = {}
runoff_dict = {'ACCESS1.3': ACCESS_melt, 'CESM2': CESM_melt, 'NorESM1-M': NOR_melt, 'CNRM-CM6-1': CNRM_melt}
# Load invariant data
grd_ice = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Grounded ice')
continent = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'IF SOL3 EQ 4 THEN 1 ELSE 0')
rock = iris.load_cube(filepath + 'MARcst-AN35km-176x148.cdf', 'Rock')
# Create masks
ais = np.ma.masked_equal(continent.data, 0) # mask areas of ocean
grd = np.ma.masked_less(grd_ice.data, 30)
# mask non-ice, non-grounded ice grid points and multiply by grid area to find true area
grounded_mask = grd * ais
grounded_mask[grounded_mask >= 30] = 1
shf = np.ma.masked_greater(grd_ice.data, 50)
shf_msk = ais * shf
shf_msk = np.ma.masked_where(rock.data > 30, shf_msk)
shelf_mask = ~shf_msk.mask # Shelf areas are = 1
for i, j in enumerate(['ACCESS1.3', 'CESM2', 'NorESM1-M', 'CNRM-CM6-1']):
try:
runoff_dict[j]['RU_dur'] = iris.load_cube(filepath + 'RU_MAR_' + j + '_rcp8.5_future.nc')
except:
runoff_dict[j]['RU_dur'] = iris.load_cube(filepath + 'RU_MAR_' + j + '_ssp585_future.nc')
runoff_dict[j]['RU_dur'] = runoff_dict[j]['RU_dur'][:,0,:,:]
iris.coord_categorisation.add_year(runoff_dict[j]['RU_dur'], 'time', name='year')
runoff_dict[j]['RU_dur'].data[runoff_dict[j]['RU_dur'].data < 1] = 0
runoff_dict[j]['RU_dur'].data[np.broadcast_to(shelf_mask, runoff_dict[j]['RU_dur'].shape) == 0] = np.nan
runoff_dict[j]['RU_dur'].data[runoff_dict[j]['RU_dur'].data >= 1] = 1.
runoff_dict[j]['RU_dur'] = runoff_dict[j]['RU_dur'].aggregated_by(['year'], iris.analysis.SUM)
return runoff_dict
runoff_dict= runoff_dur()
AIS_mask = np.zeros((148, 176))
AIS_mask[AIS_mask == 0] = np.nan
AIS_mask[masks['ais'] == 1] = 1.
WA_mask = np.zeros((148, 176))
WA_mask[WA_mask == 0] = np.nan
WA_mask[ 20:78, 30:97] = 1.
EA_mask = np.zeros((148, 176))
EA_mask[EA_mask == 0] = np.nan
EA_mask[:, 67:] = 1.
EA_mask[30:65, :35] = np.nan
AP_mask = np.zeros((148, 176))
AP_mask[AP_mask == 0] = np.nan
AP_mask[ 80:120, :50] = 1.
# Find GCM warming periods ref 1950-79
ACCESS_T = iris.load_cube(filepath + 'year_ACCESS1-3.nc2', 'Near-Surface Air Temperature')
CESM_T = iris.load_cube(filepath + 'year_CESM2.nc2', 'Near-Surface Air Temperature')
NorESM_T = iris.load_cube(filepath + 'year_NorESM1-M.nc2', 'Near-Surface Air Temperature')
CNRM_T = iris.load_cube(filepath + 'year_CNRM-CM6-1.nc2', 'Near-Surface Air Temperature')
MMM_T = (ACCESS_T.data.mean(axis = (1,2)) + CNRM_T.data.mean(axis = (1,2)) + CESM_T.data.mean(axis = (1,2)) + NorESM_T.data.mean(axis = (1,2)))/4
GCM_T = {'ACCESS-1.3': ACCESS_T, 'CESM2': CESM_T, 'NorESM1-M': NorESM_T, 'CNRM-CM6-1':CNRM_T}
ACCESS_preind = iris.load_cube(filepath + 'ACCES1-3_185001-190012.nc', 'Near-Surface Air Temperature')
CESM_preind = iris.load_cube(filepath + 'CESM2_185001-190012.nc', 'Near-Surface Air Temperature')
NorESM_preind = iris.load_cube(filepath + 'NorESM1-M_185001-190012.nc', 'Near-Surface Air Temperature')
CNRM_preind = iris.load_cube(filepath + 'CNRM-CM6-1_185001-190012.nc', 'Near-Surface Air Temperature')
for c in [ACCESS_preind, CESM_preind, NorESM_preind, CNRM_preind]:
iris.coord_categorisation.add_year(c, 'time', name='month')
MMM_preind = (CNRM_preind[:359].aggregated_by(['month'], iris.analysis.MEAN).data.mean() + NorESM_preind[:359].aggregated_by(['month'], iris.analysis.MEAN).data.mean()+ CESM_preind[:359].aggregated_by(['month'], iris.analysis.MEAN).data.mean()+ ACCESS_preind[:359].aggregated_by(['month'], iris.analysis.MEAN).data.mean())/4
preind_refs = {'ACCESS1.3': ACCESS_preind,
'CESM2': CESM_preind,
'CNRM-CM6-1': CNRM_preind,
'NorESM1-M': NorESM_preind,
'MMM': MMM_preind}
# create spatial maps of pre-industrial temps for each model
preind_list = [np.mean(ACCESS_preind[:359,1:].data, axis = 0), np.mean(CESM_preind[:359].data, axis = 0), np.mean(NorESM_preind[:359].data, axis = 0), np.mean(CNRM_preind[:359].data, axis = 0),]
labs = ['ACCESS-1.3', 'CESM2', 'NorESM1-M', 'CNRM-CM6-1']
for i, j in enumerate([ACCESS_T, CESM_T, NorESM_T, CNRM_T]):
plt.plot(range(1950,2101), np.mean(j.data - np.broadcast_to(preind_list[i].data, j.shape), axis = (1,2)) , label = labs[i])
plt.legend()
plt.savefig(filepath + 'GCM_global_mean_temp.png')
#plt.show()
# Subtract spatial mean of GCM temp from pre-industrial at each timestep to find anomaly
anom_dict = {}
for i, k in enumerate(labs):
anom_dict[k] = np.mean(GCM_T[k].data - np.broadcast_to(preind_list[i].data, GCM_T[k].shape), axis = (1,2))
#anom_dict[k] = np.mean(GCM_T[k].data, axis = (1,2))- preind_list[i].mean()
plt.plot(range(1950,2101), anom_dict[k], label = k)
plt.legend()
plt.ylabel('Global mean near-surface temperature\nanomaly relative to 1850-1880', labelpad = 30)
plt.xlim(1950,2101)
plt.subplots_adjust(left = 0.2)
plt.savefig(filepath + 'GCM_global_mean_temp_anomaly.png')
#plt.show()
rolling_mn = pd.Series(anom_dict['NorESM1-M']).rolling(window=30).mean().iloc[30-1:].values
np.where(rolling_mn>1.5) # or 2/ 4 deg
#Ref: 1850-1879
rolling_mn = pd.Series(np.mean(MMM_T, axis = (1,2))).rolling(window=30).mean().iloc[30-1:].values
np.where(rolling_mn-np.mean(MMM_preind)>1.5)
# dictionary of end years for averages of +1.5, +2 and +4 deg above 1950-79 reference.
# Remember to -29 to each to get the start year. (MAR simulations 1980-2100 only)
# Historical periods last
slice_dict = {'ACCESS1.3': (61, 71, 103, 30),
'CESM2': (52, 62, 95, 29),
'CNRM-CM6-1': (55, 68, 98, 29),
'NorESM1-M': (60, 73, 116, 29),
'MMM': (57, 69, 103, 29)}
def plot_scenarios(v, dT, difs_or_abs, threshold):
'''Figure caption: '''
# plot differences between 1950-79 and +1.5/2/4 degree world
if dT == '1p5':
tuple_idx = 0
elif dT == '2':
tuple_idx = 1
elif dT == '4':
tuple_idx = 2
elif dT == 'hist':
tuple_idx = 3
fig, axs = plt.subplots(2,2, figsize = (12,10))
axs = axs.flatten()
CbAx = fig.add_axes([0.85,0.25, 0.03, 0.5])
for i, j in enumerate(dict_list.keys()):
axs[i].contourf(masks['ais'], colors='white', vmin=0, vmax=1, zorder = 1) # manually plot ocean as white
if difs_or_abs == 'difs':
if v == 'SMB' or v == 'SF':
lims = (-200, 500)
bwr_zero = shiftedColorMap(cmap=matplotlib.cm.RdBu, min_val=lims[0], max_val=lims[1], name='bwr_zero',
var=np.mean(MMM_dict[v][slice_dict['MMM'][tuple_idx] - 29:slice_dict['MMM'][tuple_idx]].data, axis=0) -np.mean(MMM_dict[v][:29].data, axis=0), start=0.15, stop=0.85)
cm = bwr_zero
#cm = 'RdBu'
c = axs[i].pcolormesh(np.ma.masked_where(masks['ais']==0, np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0) -np.mean(dict_list[j][v][:29].data, axis=0)), cmap = cm, vmin = -200, vmax = 500) # calculate difference relative to historical period
elif v == 'RF':
lims = (0, 100)
shiftedColorMap(cmap=matplotlib.cm.Blues, min_val=lims[0], max_val=lims[1], name='blues_tight',
var=(np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data,axis=0)), start=0.15, stop=0.85)
cm = matplotlib.cm.Blues
c = axs[i].pcolormesh(np.ma.masked_where(masks['ais']==0, np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0) -np.mean(dict_list[j][v][:29].data, axis=0)), cmap = cm, vmin = 00, vmax = 100) # calculate difference relative to historical period
else:
lims = (-500, 500)
bwr_zero = shiftedColorMap(cmap=matplotlib.cm.RdBu_r, min_val=lims[0], max_val=lims[1], name='bwr_zero',
var=(np.mean(
dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data,
axis=0)), start=0.15, stop=0.85)
cm = bwr_zero
# Find mean difference between slice where warming = +dT and start of the simulation (i.e. the difference at dT)
c = axs[i].pcolormesh(np.ma.masked_where(masks['ais']==0, np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0) -np.mean(dict_list[j][v][:29].data, axis=0)), cmap = cm, vmin = -500, vmax = 500) # calculate difference relative to historical period
elif difs_or_abs == 'abs':
if v == 'SMB':
lims = (-1000, 2000)
bwr_zero = shiftedColorMap(cmap=matplotlib.cm.RdBu, min_val=lims[0], max_val=lims[1], name='bwr_zero',
var=(np.mean(
dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data,
axis=0)), start=0.15, stop=0.85)
cm = bwr_zero
else:
cm = 'Reds'
lims = (0,1000)
if threshold == 'yes':
c = axs[i].pcolormesh(np.ma.masked_where((np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0))<=(np.mean(dict_list[j]['SF'][:29].data, axis = 0)*0.7),(np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0))), zorder = 4, cmap=cm, vmin=lims[0], vmax=lims[1])
c2 = axs[i].pcolormesh(np.ma.masked_where(
(np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0)) > (
np.mean(dict_list[j]['SF'][:29].data, axis=0) * 0.7),
(np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0))),
color=['white'], vmin=lims[0], vmax=lims[1], zorder = 2)
else:
c = axs[i].pcolormesh( np.mean(dict_list[j][v][slice_dict[j][tuple_idx] - 29:slice_dict[j][tuple_idx]].data, axis=0), cmap=cm, vmin=lims[0], vmax=lims[1])
axs[i].contour(masks['shelf'], levels= [0], colors = 'k', linewidths = 0.8, zorder = 5)
axs[i].set_title(j, fontsize=20, color='dimgrey', )
axs[i].axis('off')
cb = plt.colorbar(c, cax = CbAx, ticks = [lims[0], 0, lims[1]], extend = 'both')
cb.solids.set_edgecolor("face")
cb.outline.set_edgecolor('dimgrey')
cb.ax.tick_params(which='both', axis='both', labelsize=20, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
cb.outline.set_linewidth(2)
cb.ax.xaxis.set_ticks_position('bottom')
if difs_or_abs == 'difs':
if v == 'ME_dur':
cb.ax.set_title('d yr$^{-1}$', fontname='Helvetica', color='dimgrey', fontsize=20, pad=20)
else:
cb.ax.set_title('kg m$^{-2}$ yr$^{-1}$', fontname='Helvetica', color='dimgrey', fontsize=20, pad=20)
elif difs_or_abs == 'abs':
if v == 'ME_dur':
cb.ax.set_title('d yr$^{-1}$', fontname='Helvetica', color='dimgrey', fontsize=20, pad=20)
else:
cb.ax.set_title('kg m$^{-2}$ yr$^{-1}$', fontname='Helvetica', color='dimgrey', fontsize=20,pad=20)
plt.subplots_adjust(right = 0.8)
plt.savefig(filepath + 'GCM_' + v + '_' + difs_or_abs + '_' + dT + '_deg_warming.png')
plt.savefig(filepath + 'GCM_' + v + '_' + difs_or_abs + '_' + dT + '_deg_warming.eps')
plt.show()
#plot_scenarios('SF', '4', 'difs', 'no')
#for i in ['RF', 'SF']:
# for j in ['1p5', '2', '4']:
# plot_scenarios(i, j, 'difs', threshold='no')
#for j in ['hist', '1p5', '2', '4']:
# plot_scenarios('ME', j, 'abs', threshold = 'yes')
def plot_runoff_dur(runoff_dict, dT):
# plot differences between 1950-79 and +1.5/2/4 degree world
if dT == '1p5':
tuple_idx = 0
elif dT == '2':
tuple_idx = 1
elif dT == '4':
tuple_idx = 2
elif dT == 'hist':
tuple_idx = 3
fig, axs = plt.subplots(2,2, figsize = (12,10))
axs = axs.flatten()
CbAx = fig.add_axes([0.85,0.25, 0.03, 0.5])
for i, j in enumerate(runoff_dict.keys()):
# Find mean difference between slice where warming = +dT and start of the simulation (i.e. the difference at dT)
c = axs[i].pcolormesh(masks['shelf'] * (np.mean(runoff_dict[j]['RU_dur'][slice_dict[j][tuple_idx]-29:slice_dict[j][tuple_idx]].data, axis = 0)-
(np.mean(runoff_dict[j]['RU_dur'][:29].data, axis = 0))), cmap = 'Reds', vmin = 0, vmax = 60)
axs[i].contour(masks['shelf'], levels= [0], colors = 'k', linewidths = 0.8)
axs[i].set_title(j, fontsize=20, color='dimgrey', )
axs[i].axis('off')
cb = plt.colorbar(c, cax = CbAx, ticks = [0, 30, 60, 100, 365], extend = 'max')
cb.solids.set_edgecolor("face")
cb.outline.set_edgecolor('dimgrey')
cb.ax.tick_params(which='both', axis='both', labelsize=20, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
cb.outline.set_linewidth(2)
cb.ax.xaxis.set_ticks_position('bottom')
#cb.set_label(v, fontsize=20, rotation = 0, color='dimgrey', labelpad=30)
cb.ax.set_title('Mean runoff duration\n (d yr$^{-1}$)', fontname='Helvetica', color='dimgrey', fontsize=20, pad=20)
plt.subplots_adjust(right = 0.8)
plt.savefig(filepath + 'GCM_runoff_duration_difs_+'+ dT + '_deg_warming.png')
plt.savefig(filepath + 'GCM_runoff_duration_difs_+' + dT + '_deg_warming.eps')
plt.show()
#or t in ['hist', '1p5', '2', '4']:
# plot_runoff_dur(runoff_dict, t)
#for j in ['hist', '1p5', '2', '4']:
# plot_scenarios('RU_dur', dT = j, difs_or_abs='abs', threshold = 'no')
# Create dictionar of MMM values
MMM_dict = {}
for j in dict_list['CESM2'].keys():
print(j)
MMM_dict[j] = (dict_list['ACCESS1.3'][j][:120].data + dict_list['CESM2'][j].data + dict_list['NorESM1-M'][j].data
+ dict_list['CNRM-CM6-1'][j].data )/4 # Find multi-model mean, ignoring differing time coordinate definitions
MMM_dict['RU_dur'] = (runoff_dict['ACCESS1.3']['RU_dur'][:120].data + runoff_dict['CESM2']['RU_dur'].data + runoff_dict['NorESM1-M']['RU_dur'].data + runoff_dict['CNRM-CM6-1']['RU_dur'].data)/4
def plot_difs(dif, dif_str):
fig, axs = plt.subplots(1,1, figsize = (12,9))
# Find mean difference between slice where warming = +dT and start of the simulation (i.e. the difference at dT)
CbAx = fig.add_axes([0.85, 0.25, 0.03, 0.5])
if dif_str[-3:] == 'SMB':
c = axs.pcolormesh(dif, cmap = 'RdBu', vmin = -500, vmax = 500) # masks['shelf'] * dif
elif dif_str[4:7] == 'melt':
c = axs.pcolormesh(np.ma.masked_where((np.mean(MMM_dict['ME'][slice_dict['MMM'][2]-29:slice_dict['MMM'][2]].data, axis=0) < 725), dif), cmap='RdBu_r', vmin=-500, vmax=500)
elif dif_str[4:] == 'RU_dur':
c = axs.pcolormesh((np.mean(MMM_dict['RU_dur'][slice_dict['MMM'][2]-29:slice_dict['MMM'][2]].data, axis =0)-np.mean(MMM_dict['RU_dur'][:29].data, axis = 0)), cmap='RdBu_r', vmin=-60, vmax=60)
else:
c = axs.pcolormesh(dif, cmap='RdBu_r', vmin=-50, vmax=50)
#axs.contour(np.mean(MMM_dict['ME'][slice_dict['MMM'][2]-29:slice_dict['MMM'][2]].data, axis=0), levels = [725], colors = 'cyan', linewidths = 3)
axs.contour(masks['shelf'], levels= [0], colors = 'k', linewidths = 0.8)
axs.axis('off')
cb = plt.colorbar(c, cax = CbAx, ticks = [-60, 0, 60], extend = 'both')
cb.solids.set_edgecolor("face")
cb.outline.set_edgecolor('dimgrey')
cb.ax.tick_params(which='both', axis='both', labelsize=20, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
cb.outline.set_linewidth(2)
cb.ax.xaxis.set_ticks_position('bottom')
cb.ax.set_title('Difference in \n' + dif_str[4:] +'\n (kg m$^{-2}$ yr$^{-1}$)', fontname='Helvetica', color='dimgrey', fontsize=20, pad=20)
plt.subplots_adjust(right = 0.8)
plt.savefig(filepath + dif_str + '_difs_btw_1p5_and_4_deg_warming.png')
plt.savefig(filepath + dif_str + '_difs_btw_1p5_and_4_deg_warming.eps')
plt.show()
#plot_difs(dif_dict['MMM']['ME'], dif_str = 'MMM_melt_amnt')
#plot_difs(dif_dict['MMM']['RU'], dif_str = 'MMM_runoff')
#plot_difs(dif_dict['MMM']['SMB'], dif_str = 'MMM_SMB')
#plot_difs(MMM_dict['RU_dur'], dif_str = 'MMM_RU_dur')
def mega_plot():
# plot differences between 1950-79 and +1.5/2/4 degree world
# Caption: Multi-model mean melt (ME), runoff (RU), and surface mass balance (SMB) under the 1.5°C, 2°C and 4°C
# warming scenarios, expressed as the difference relative to the historical period, 1980-2009. Warm and cool colours
# indicate an increase and decrease relative to the historical period, respectively, for melt and runoff, while the
# colour scale is reversed for SMB.
fig, axs = plt.subplots(3,3, figsize = (20,22))
axs = axs.flatten()
for ax in axs:
ax.contour(masks['shelf'], levels=[0], colors='k', linewidths=0.8)
ax.axis('off')
CbAx = fig.add_axes([0.25,0.05, 0.5, 0.03])
CbAx2 = CbAx.twiny()
plid = 0
axs[0].annotate('1.5$^{\circ}$C', (-0.2, 0.5), xycoords = 'axes fraction', fontsize=36, color='dimgrey', )
axs[3].annotate('2$^{\circ}$C', (-0.2, 0.5), xycoords = 'axes fraction', fontsize=36, color='dimgrey', )
axs[6].annotate('4$^{\circ}$C', (-0.2, 0.5), xycoords = 'axes fraction', fontsize=36, color='dimgrey', )
for i, j in enumerate(['ME', 'RU', 'SMB']):
axs[i].set_title(j, fontsize=28, color='dimgrey', )
for dT in [0,1,2]: # for each dT
for i, j in enumerate(['ME', 'RU', 'SMB']):
if j == 'SMB':
cm = 'RdBu'
cax = CbAx
tick_pos = 'bottom'
tick_labs = ['+500\n(SMB)', '+250', '0', '-250', '-500\n(SMB)']
else:
cm = 'RdBu_r'
cax = CbAx2
tick_pos = 'top'
tick_labs = ['(ME, RU)\n-500', '-250', '0', '+250', '(ME, RU)\n+500']
# Find mean difference between slice where warming = +dT and start of the simulation (i.e. the difference at dT)
c = axs[plid + i].pcolormesh( np.ma.masked_where((masks['ais'] == 0),(np.mean(MMM_dict[j][slice_dict['MMM'][dT]-29:slice_dict['MMM'][dT]].data, axis = 0)-(np.mean(MMM_dict[j][:29].data, axis = 0)))), cmap = cm, vmin = -500, vmax = 500)
#axs[plid + i].contourf(masks['ais'] == 1, colors= 'white')
cb2 = plt.colorbar(c, cax=cax, ticks=[-500, -250, 0, 250, 500], extend='both', orientation = 'horizontal')
cb = plt.colorbar(c, cax=cax, ticks=[-500, -250, 0, 250, 500], extend='both', orientation = 'horizontal')
cb.set_ticklabels(tick_labs)
cb.solids.set_edgecolor("face")
cb.outline.set_edgecolor('dimgrey')
cb.ax.tick_params(which='both', axis='both', labelsize=32, labelcolor='dimgrey', pad=10, size=0,
tick1On=False, tick2On=False)
cb.outline.set_linewidth(2)
cb.ax.set_title('Mean difference (kg m$^{-2}$ yr$^{-1}$)', fontname='Helvetica', color='dimgrey',
fontsize=32, pad=20)
cb.ax.xaxis.set_ticks_position(tick_pos)
cb.ax.xaxis.set_label_position(tick_pos)
plid = plid+3
l, b, w, h = cb.ax.get_position().bounds
cb.ax.set_position([l, b, w, h])
cb2.ax.set_position([l, b, w, h])
plt.subplots_adjust(right = 0.95, bottom=0.18, top = 0.95, left = 0.07, wspace=0.0, hspace=0.0)
plt.savefig(filepath + 'MMM_difs_at_each_deg_warming.png')
plt.savefig(filepath + 'MMM_difs_at_each_deg_warming.eps')
plt.show()
#mega_plot()
# Produce dataframe with absolute values for each SMB component, summed over ice shelves
df = pd.DataFrame(index = ['SF', 'RF', 'ME', 'RU', 'SMB'])#'ME_dur',
dT = ['1p5', '2', '4', 'HIST' ]
for n, j in enumerate(dT):
for i in dict_list.keys():
sum_SF = np.nansum(np.mean(dict_list[i]['SF'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
sum_RF = np.nansum(np.mean(dict_list[i]['RF'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
sum_ME = np.nansum(np.mean(dict_list[i]['ME'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
#mn_ME_dur = np.nanmean( np.mean(runoff_dict[i]['ME_dur'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) * stats['grid_area'].data *masks['shelf'] * (35000 * 35000)) / 1e12
sum_RU = np.nansum(np.mean(dict_list[i]['RU'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
sum_SMB = np.nansum(np.mean(dict_list[i]['SMB'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
df[i] = pd.Series([sum_SF, sum_RF, sum_ME, sum_RU, sum_SMB], index = ['SF', 'RF', 'ME', 'RU', 'SMB'])
sum_ME = np.nansum(np.mean(MMM_dict['ME'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_SF = np.nansum(np.mean(MMM_dict['SF'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_RF = np.nansum(np.mean(MMM_dict['RF'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
#mn_ME_dur = np.nanmean(np.mean(MMM_dict['ME_dur'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_RU = np.nansum(np.mean(MMM_dict['RU'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_SMB = np.nansum(np.mean(MMM_dict['SMB'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
df['MMM'] = pd.Series([sum_SF, sum_RF, sum_ME, sum_RU, sum_SMB], index=['SF', 'RF', 'ME', 'RU', 'SMB'])#'ME_dur',
df.to_csv(filepath + 'Ice_shelf_abs_Gt_'+ j + region + '_deg.csv')
# Produce equivalent dataframe with increase/decrease above/below historical mean
df = pd.DataFrame(index = ['SF', 'RF', 'ME', 'RU', 'SMB'])#'ME_dur',
dT = ['1p5', '2', '4', 'HIST' ]
for n, j in enumerate(dT):
for i in dict_list.keys():
sum_SF = np.nansum((np.mean(dict_list[i]['SF'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0)- np.mean(dict_list[i]['SF'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
sum_RF = np.nansum((np.mean(dict_list[i]['RF'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0)- np.mean(dict_list[i]['RF'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
sum_ME = np.nansum((np.mean(dict_list[i]['ME'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) - np.mean(dict_list[i]['ME'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
#mn_ME_dur = np.nanmean((np.mean(runoff_dict[i]['ME_dur'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) - np.mean(runoff_dict[i]['ME_dur'][:29].data, axis=0)) * stats[ 'grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_RU = np.nansum((np.mean(dict_list[i]['RU'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) - np.mean(dict_list[i]['RU'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
sum_SMB = np.nansum((np.mean(dict_list[i]['SMB'][slice_dict[i][n] - 29:slice_dict[i][n]].data, axis=0) - np.mean(dict_list[i]['SMB'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000))/1e12
df[i] = pd.Series([sum_SF, sum_RF, sum_ME, sum_RU, sum_SMB], index = ['SF', 'RF', 'ME', 'RU', 'SMB'])#'ME_dur',
sum_SF = np.nansum((np.mean(MMM_dict['SF'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) - np.mean(MMM_dict['SF'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_RF = np.nansum((np.mean(MMM_dict['RF'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) - np.mean(MMM_dict['RF'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_ME = np.nansum((np.mean(MMM_dict['ME'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) - np.mean(MMM_dict['ME'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
#mn_ME_dur = np.nanmean((np.mean(MMM_dict['ME_dur'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) - np.mean( MMM_dict['ME_dur'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_RU = np.nansum((np.mean(MMM_dict['RU'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) - np.mean(MMM_dict['RU'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
sum_SMB = np.nansum((np.mean(MMM_dict['SMB'][slice_dict['MMM'][n] - 29:slice_dict['MMM'][n]].data, axis=0) - np.mean(MMM_dict['SMB'][:29].data, axis=0)) * stats['grid_area'].data * masks['shelf'] * (35000 * 35000)) / 1e12
df['MMM'] = pd.Series([sum_SF, sum_RF, sum_ME, sum_RU, sum_SMB], index=['SF', 'RF', 'ME', 'RU', 'SMB'])#'ME_dur',
df.to_csv(filepath + 'Ice_shelf_difs_Gt_'+ j + region + '_deg.csv')
# Calculate runoff extent
for m in dict_list.keys():
dict_list[m]['runoff_ext'] = dict_list[m]['RU'].copy()
dict_list[m]['runoff_ext'].data[dict_list[m]['runoff_ext'].data>1.] = 1
dict_list[m]['runoff_ext'].data[dict_list[m]['runoff_ext'].data<1.] = 0
dict_list[m]['runoff_ext'] = (np.sum(dict_list[m]['runoff_ext'].data * stats['grid_area'].data * masks['shelf'] * (35000 * 35000), axis = (1,2))/(stats['grid_area'].data * masks['shelf'] * (35000 * 35000)).sum())*100
# Calculate melt extent above 0.7 * snowfall (Pfeffer et al., 1991)
for m in dict_list.keys():
dict_list[m]['Pfeffer_threshold'] = np.mean(dict_list[m]['SF'][:29].data, axis=0) * 0.7 * masks['shelf'] # shld be 2D
dict_list[m]['melt_ext_Pfeffer'] = dict_list[m]['ME'].copy()
dict_list[m]['melt_ext_Pfeffer'].data[dict_list[m]['melt_ext_Pfeffer'].data < dict_list[m]['Pfeffer_threshold'].data] = 0
dict_list[m]['melt_ext_Pfeffer'].data[dict_list[m]['melt_ext_Pfeffer'].data > dict_list[m]['Pfeffer_threshold'].data] = 1
dict_list[m]['melt_ext_Pfeffer'] = (np.sum(dict_list[m]['melt_ext_Pfeffer'].data * stats['grid_area'].data * masks['shelf'] * (35000 * 35000), axis = (1,2))/(stats['grid_area'].data * masks['shelf'] * (35000 * 35000)).sum())*100
dict_list['ACCESS1.3']['melt_ext_Pfeffer'] = dict_list['ACCESS1.3']['melt_ext_Pfeffer'][:120] # amend for extra year in ACCESS1.3
dict_list['ACCESS1.3']['runoff_ext'] = dict_list['ACCESS1.3']['runoff_ext'][:120]
# Calculate runoff extent over ice shelves
def runoff_extent_plot():
fig, ax = plt.subplots(1,1,figsize = (14,8))
ax.fill_between(range(1980, 2100), y1 = np.max([dict_list['CESM2']['melt_ext_Pfeffer'],dict_list['NorESM1-M']['melt_ext_Pfeffer'], dict_list['ACCESS1.3']['melt_ext_Pfeffer'],
dict_list['CNRM-CM6-1']['melt_ext_Pfeffer']], axis = 0), y2 = np.min([dict_list['CESM2']['melt_ext_Pfeffer'],dict_list['NorESM1-M']['melt_ext_Pfeffer'],
dict_list['ACCESS1.3']['melt_ext_Pfeffer'],dict_list['CNRM-CM6-1']['melt_ext_Pfeffer']], axis = 0), color = 'lightgrey', zorder = 1)
for m in dict_list.keys():
ax.plot(range(1980, 2100), dict_list[m]['melt_ext_Pfeffer'], label = m, zorder = 2)
ax.plot(range(1980, 2100),np.mean([dict_list['CESM2']['melt_ext_Pfeffer'],dict_list['NorESM1-M']['melt_ext_Pfeffer'], dict_list['ACCESS1.3']['melt_ext_Pfeffer'],
dict_list['CNRM-CM6-1']['melt_ext_Pfeffer']], axis = 0), color = 'k', linewidth = 3, label = 'MMM', zorder = 3)
ax.set_xticks([1980, 2000, 2020, 2040, 2060, 2080, 2100])
ax.set_xlim(1980,2100)
ax.set_ylim(0,100)
ax.set_ylabel('Ice shelf melt extent\n> Pfeffer threshold (%)', labelpad = 150, rotation = 0, fontsize = 20, color = 'dimgrey')
lgd = ax.legend(bbox_to_anchor=(0.05, 1.), loc = 2, fontsize = 20)
frame = lgd.get_frame()
frame.set_facecolor('white')
for ln in lgd.get_texts():
plt.setp(ln, color='dimgrey', fontsize = 18)
lgd.get_frame().set_linewidth(0.0)
plt.setp(ax.spines.values(), linewidth=2, color='dimgrey')
ax.tick_params(axis='both', which='both', labelsize=24, tick1On=False, tick2On=False, labelcolor='dimgrey', pad=10)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.subplots_adjust(left = 0.35, right = 0.97)
plt.savefig(filepath + 'pct_ice_shf_area_'+ region + '_Pfeffer_melt.png')
plt.savefig(filepath + 'pct_ice_shf_area_' + region + '_Pfeffer_melt.eps')
#plt.show()
#runoff_extent_plot()
#Add MMM runoff extent and Pfeffer melt extent to MMM dictionary
MMM_dict['melt_ext_Pfeffer'] = np.mean([dict_list['CESM2']['melt_ext_Pfeffer'],dict_list['NorESM1-M']['melt_ext_Pfeffer'], dict_list['ACCESS1.3']['melt_ext_Pfeffer'],
dict_list['CNRM-CM6-1']['melt_ext_Pfeffer']], axis = 0)
MMM_dict['runoff_ext'] = np.mean([dict_list['CESM2']['runoff_ext'],dict_list['NorESM1-M']['runoff_ext'], dict_list['ACCESS1.3']['runoff_ext'],
dict_list['CNRM-CM6-1']['runoff_ext']], axis = 0)
# Create dataframe of percentage of area where melt above the Pfeffer threshold is simulated
df = pd.DataFrame(index = ['HIST', '1.5', '2', '4'])
for m in dict_list.keys():
df[m] = pd.Series([np.mean(dict_list[m]['melt_ext_Pfeffer'].data[:29]),
np.mean(dict_list[m]['melt_ext_Pfeffer'].data[slice_dict[m][0] - 29: slice_dict[m][0]]),
np.mean(dict_list[m]['melt_ext_Pfeffer'].data[slice_dict[m][1] - 29: slice_dict[m][1]]),
np.mean(dict_list[m]['melt_ext_Pfeffer'].data[
slice_dict[m][2] - 29: slice_dict[m][2]])], index = ['HIST', '1.5', '2', '4'])
df['MMM'] = pd.Series([np.mean(MMM_dict['melt_ext_Pfeffer'].data[:29]), np.mean(MMM_dict['melt_ext_Pfeffer'].data[slice_dict['MMM'][0] - 29: slice_dict['MMM'][0]]),
np.mean(MMM_dict['melt_ext_Pfeffer'].data[slice_dict['MMM'][1] - 29: slice_dict['MMM'][1]]),
np.mean(MMM_dict['melt_ext_Pfeffer'].data[
slice_dict['MMM'][2] - 29: slice_dict['MMM'][2]])], index = [ 'HIST','1.5', '2', '4'])
df.to_csv(filepath + 'pct_ice_shelf_area_'+ region + '_abv_Pfeffer.csv')
# Create equivalent dataframe of area where runoff is simulated
df = pd.DataFrame(index = ['HIST', '1.5', '2', '4'])
for m in dict_list.keys():
df[m] = pd.Series([np.mean(dict_list[m]['runoff_ext'].data[:29]),
np.mean(dict_list[m]['runoff_ext'].data[slice_dict[m][0] - 29: slice_dict[m][0]]),
np.mean(dict_list[m]['runoff_ext'].data[slice_dict[m][1] - 29: slice_dict[m][1]]),
np.mean(dict_list[m]['runoff_ext'].data[
slice_dict[m][2] - 29: slice_dict[m][2]])], index = ['HIST', '1.5', '2', '4'])
df['MMM'] = pd.Series([np.mean(MMM_dict['runoff_ext'].data[:29]), np.mean(MMM_dict['runoff_ext'].data[slice_dict['MMM'][0] - 29: slice_dict['MMM'][0]]),
np.mean(MMM_dict['runoff_ext'].data[slice_dict['MMM'][1] - 29: slice_dict['MMM'][1]]),
np.mean(MMM_dict['runoff_ext'].data[
slice_dict['MMM'][2] - 29: slice_dict['MMM'][2]])], index = [ 'HIST','1.5', '2', '4'])
df.to_csv(filepath + 'pct_ice_shelf_area_'+ region + '_runoff.csv')
# Create dataframe of runoff duration in each sector of Antarctica
reg_masks = [AIS_mask, AP_mask, WA_mask, EA_mask]
for n, region in enumerate(['AIS', 'AP', 'WA', 'EA']):
df = pd.DataFrame(index = ['HIST', '1.5', '2', '4'])
for m in runoff_dict.keys():
df[m] = pd.Series([np.nanmean(np.nanmean(runoff_dict[m]['RU_dur'].data[:29], axis = 0) * reg_masks[n]),
np.nanmean(np.nanmean(runoff_dict[m]['RU_dur'].data[slice_dict[m][0] - 29: slice_dict[m][0]], axis = 0) * reg_masks[n]),
np.nanmean(np.nanmean(runoff_dict[m]['RU_dur'].data[slice_dict[m][1] - 29: slice_dict[m][1]], axis = 0) * reg_masks[n]),
np.nanmean(np.nanmean(runoff_dict[m]['RU_dur'].data[slice_dict[m][2] - 29: slice_dict[m][2]], axis = 0) * reg_masks[n])], index = ['HIST', '1.5', '2', '4'])
df['MMM'] = pd.Series([np.nanmean(np.nanmean(MMM_dict['RU_dur'].data[:29], axis = 0) * reg_masks[n]), np.nanmean(np.nanmean(MMM_dict['RU_dur'].data[slice_dict['MMM'][0] - 29: slice_dict['MMM'][0]], axis = 0) * reg_masks[n]),
np.nanmean(np.nanmean(MMM_dict['RU_dur'].data[slice_dict['MMM'][1] - 29: slice_dict['MMM'][1]], axis = 0) * reg_masks[n]),
np.nanmean(np.nanmean(MMM_dict['RU_dur'].data[
slice_dict['MMM'][2] - 29: slice_dict['MMM'][2]], axis = 0) * reg_masks[n])], index = [ 'HIST','1.5', '2', '4'])
df.to_csv(filepath + 'ice_shelf_runoff_dur_'+ region + '.csv')
rcParams['font.family'] = 'sans-serif'
rcParams['font.size'] = 20
rcParams['font.sans-serif'] = ['Segoe UI', 'Helvetica', 'Liberation sans', 'Tahoma', 'DejaVu Sans', 'Verdana']
# Plot scatter scenarios
def scatter_scen(abs_or_difs, reg):
# Set up figure
if abs_or_difs == 'abs':
fig, ax = plt.subplots(figsize=(14, 8))
ax.set_xticks(ticks=[2.5, 6.5, 10.5])
elif abs_or_difs == 'difs':
fig, ax = plt.subplots(figsize=(8,5 ))
ax.set_xticks(ticks=[1,2,3])
ax.spines['left'].set_linewidth(2)
ax.spines['left'].set_color('dimgrey')
ax.spines['bottom'].set_linewidth(2)
ax.spines['bottom'].set_color('dimgrey')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticklabels(labels=['ME', 'RU', 'SMB'])
ax.set_xlabel('Component', fontsize=24, labelpad=30, color='dimgrey')
ax.set_ylabel('\nGt yr$^{-1}$', labelpad=50, rotation=0, fontsize=24, color='dimgrey')
ax.tick_params(labelsize=24, labelcolor='dimgrey', width = 2, length = 5, color = 'dimgrey')
plt.subplots_adjust(left=0.15, right=0.8)
# Set up dictionaries
scen_lookup = {0:0, 1.5: 1, 2.0: 2, 4.0: 3}
if abs_or_difs == 'abs':
col_dict = {0: '#F6BFB3', 1.5: '#F78F78', 2.0: '#FC441B', 4.0: '#A72609'}
var_lookup = {'ME': 1, 'RU': 5, 'SMB': 9}
elif abs_or_difs == 'difs':
col_dict = {'ME': '#227BD5', 'RU': '#AB21D1', 'SMB': '#1E990A'}
var_lookup = {'ME': 1, 'RU': 2, 'SMB': 3}
mkr_dict = {'ACCESS1.3': 'x', 'CESM2': 'P', 'CNRM-CM6-1': '^', 'NorESM1-M': '*', 'MMM': 'o'}
# Read data
if abs_or_difs == 'abs':
df_hist = pd.read_csv('D:\\Antarctic SMB\\Ice_shelf_abs_Gt_hist'+reg+'_deg.csv', index_col=0)#, skiprows=[2])
df_hist = df_hist.transpose()
df_hist = df_hist.assign(Scenario=0) # header = ['ACCESS1.3','CESM2', 'NorESM1-M', 'CNRM-CM6-1']
df_1p5 = pd.read_csv('D:\\Antarctic SMB\\Ice_shelf_'+ abs_or_difs+'_Gt_1p5'+reg+'_deg.csv', index_col=0)#, skiprows=[2])
df_1p5 = df_1p5.transpose()
df_1p5 = df_1p5.assign(Scenario=1.5) # header = ['ACCESS1.3','CESM2', 'NorESM1-M', 'CNRM-CM6-1']
df_2 = pd.read_csv('D:\\Antarctic SMB\\Ice_shelf_'+ abs_or_difs+'_Gt_2'+reg+'_deg.csv', index_col=0)#, skiprows=[2])
df_2 = df_2.transpose()
df_2 = df_2.assign(Scenario=2)
df_4 = pd.read_csv('D:\\Antarctic SMB\\Ice_shelf_'+ abs_or_difs+'_Gt_4'+reg+'_deg.csv', index_col=0)#, skiprows=[2])
df_4 = df_4.transpose()
df_4 = df_4.assign(Scenario=4)
cdf = pd.concat([df_hist, df_1p5, df_2, df_4])
cdf['Model'] = cdf.index
mdf = pd.melt(cdf, id_vars=['Scenario', 'Model'], var_name=['Var'])
mins = mdf.groupby(['Var', 'Scenario']).min()
maxs = mdf.groupby(['Var', 'Scenario']).max()
# Plot data in categories, with markers to indicate model and colours to indicate scenario
for i in range(60):
data = mdf.iloc[i].value
x_val = var_lookup[mdf.iloc[i].Var] + scen_lookup[mdf.iloc[i].Scenario]
if mdf.iloc[i].Model == 'MMM':
plt.scatter(x_val, data, marker=mkr_dict[mdf.iloc[i].Model], s=350, c=col_dict[mdf.iloc[i].Scenario], edgecolors = 'k', linewidths=3, zorder = 4)
else:
plt.scatter(x_val, data, marker = mkr_dict[mdf.iloc[i].Model], s =350, c = col_dict[mdf.iloc[i].Scenario], zorder = 4)
for x, i in zip([1,5,9],[0,4,8]):
for n, col in enumerate([0, 1.5, 2.0, 4.0]):
ax.vlines(x=x+n, ymin=mins.iloc[i+n].value, ymax=maxs.iloc[i+n].value, colors = col_dict[col], linestyle='--', linewidth=3, zorder = 1)
# Draw lines
MMMs = mdf.loc[mdf['Model'] == 'MMM']
ax.plot((1, 2, 3, 4), (MMMs.iloc[0].value, MMMs.iloc[1].value, MMMs.iloc[2].value, MMMs.iloc[3].value), color='dimgrey', linewidth=2, zorder=3)
ax.plot((5, 6, 7, 8), (MMMs.iloc[4].value, MMMs.iloc[5].value, MMMs.iloc[6].value, MMMs.iloc[7].value), color='dimgrey', linewidth=2, zorder=3)
ax.plot((9, 10, 11, 12), (MMMs.iloc[8].value, MMMs.iloc[9].value, MMMs.iloc[10].value, MMMs.iloc[11].value), color='dimgrey', linewidth=2, zorder=3)
# Create legends
mkrs = [matplotlib.patches.Patch(facecolor=col_dict[0], edgecolor=None, label='Historical'),
matplotlib.patches.Patch(facecolor=col_dict[1.5], edgecolor=None, label='1.5$^{\circ}$C'),
matplotlib.patches.Patch(facecolor=col_dict[2.0], edgecolor=None, label='2.0$^{\circ}$C'),
matplotlib.patches.Patch(facecolor=col_dict[4.0], edgecolor=None, label='4.0$^{\circ}$C')]
lgd1 = plt.legend(handles=mkrs, bbox_to_anchor=(1.0, 0.5), loc=2, fontsize=20, title='Scenario')
ax.add_artist(lgd1)
frame = lgd1.get_frame()
frame.set_facecolor('white')
for ln in lgd1.get_texts():
plt.setp(ln, color='dimgrey', fontsize=18)
frame.set_linewidth(2.0)
frame.set_edgecolor('dimgrey')
ln = lgd1.get_title()
plt.setp(ln, color='#222222', fontsize=20)
cols = [Line2D([0], [0], marker='x', color='w', label='ACCESS1.3', markeredgecolor='#222222',
markerfacecolor='#222222', markersize=15),
Line2D([0], [0], marker='P', color='w', label='CESM2', markerfacecolor='#222222', markersize=15),
Line2D([0], [0], marker='^', color='w', label='CNRM-CM6-1', markerfacecolor='#222222', markersize=15),
Line2D([0], [0], marker='*', color='w', label='NorESM1-M', markerfacecolor='#222222', markersize=15),
Line2D([0], [0], marker='o', color='w', label='MMM', markeredgecolor='#222222', markerfacecolor='w',
markersize=15)]
lgd2 = plt.legend(handles=cols, bbox_to_anchor=(1.0, 1.), loc=2, fontsize=20, title="Model")
ax.add_artist(lgd2)
frame = lgd2.get_frame()
frame.set_facecolor('white')
for ln in lgd2.get_texts():
plt.setp(ln, color='dimgrey', fontsize=18)
ln = lgd2.get_title()
plt.setp(ln, color='#222222', fontsize=20)
frame.set_linewidth(2.0)
frame.set_edgecolor('dimgrey')
elif abs_or_difs == 'difs':
cdf = pd.read_csv('D:\\Antarctic SMB\\Ice_shelf_difs_Gt_1p5_to_4_deg.csv', index_col = 0)
cdf = cdf.transpose()
cdf['Model'] = cdf.index
mdf = pd.melt(cdf, id_vars=[ 'Model'], var_name=['Var'])
plt.axhline(y = 0, linewidth = 2, color = 'dimgrey', linestyle = '--', zorder = 2)
for i in range(15):
data = mdf.iloc[i].value
x_val = var_lookup[mdf.iloc[i].Var]
if mdf.iloc[i].Model == 'MMM':
plt.scatter(x_val, data, marker=mkr_dict[mdf.iloc[i].Model], s=550, c=col_dict[mdf.iloc[i].Var], edgecolors = 'k', linewidths=3, zorder = 4)
else:
plt.scatter(x_val, data, marker = mkr_dict[mdf.iloc[i].Model], s =550, c = col_dict[mdf.iloc[i].Var], zorder = 4)
for n, col in enumerate(['ME', 'RU', 'SMB']):
ax.vlines(x=var_lookup[col], ymin=mdf.loc[mdf['Var'] == col].min().value, ymax=mdf.loc[mdf['Var'] == col].max().value, colors = col_dict[col], linestyle='--', linewidth=3, zorder = 1)
plt.subplots_adjust(left = 0.3, right = 0.98, )
plt.savefig(filepath + 'Model_scatter_scenarios_components_'+abs_or_difs+'.png')
plt.savefig('C:\\Users\\Ella\\OneDrive - University of Reading\\Antarctic SMB\\Model_scatter_scenarios_components_'+abs_or_difs+'_'+ reg + '.png')
plt.savefig('C:\\Users\\Ella\\OneDrive - University of Reading\\Antarctic SMB\\Model_scatter_scenarios_components_'+abs_or_difs+'_'+ reg + '.eps')
plt.show()
#scatter_scen('abs','EA')
# ==================================================================================================================== #
# Time periods:
#
# ACCESS1-3:
# 2002-31 (1.5) / 2014-43 (2) / 2054-83 (4)
#
# CESM2:
# 2003-32 (1.5) / 2013-42 (2) / 2045-74 (4)
#
# NorESM1-M:
# 2010-39 (1.5) / 2023-22 (2) / 2066-95 (4)
#
# CNRM-CM6-1:
# 2005-34 (1.5) / 2018-47 (2) / 2047-76 (4)