forked from microsoft/promptbench
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
541 lines (401 loc) · 19.7 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import openai
from config import LABEL_SET, LABEL_TO_ID
from tqdm import tqdm
"""
This clss implements the inference of the model (including create the model).
"""
class Inference(object):
def __init__(self, args):
self.error_analysis = False
self.args = args
self.model = args.model
self.create_model()
def create_model(self):
"""
ChatGPT is a special case, we use the openai api to create the model.
"""
if self.model not in ['chatgpt', 'gpt4']:
import torch
import os
"""
Here you can add you own model.
"""
if self.model == 'google/flan-t5-large':
from transformers import T5Tokenizer, T5ForConditionalGeneration
self.tokenizer = T5Tokenizer.from_pretrained(
self.model, device_map="auto")
self.pipe = T5ForConditionalGeneration.from_pretrained(
self.model, device_map="auto")
elif self.model == 'EleutherAI/gpt-neox-20b':
from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast
self.tokenizer = GPTNeoXTokenizerFast.from_pretrained(
self.model, device_map="auto")
self.pipe = GPTNeoXForCausalLM.from_pretrained(
self.model, device_map="auto", torch_dtype=torch.float16)
# elif self.model.lower() == 'facebook/opt-66b':
# from transformers import AutoModelForCausalLM, AutoTokenizer
# # the fast tokenizer currently does not work correctly
# self.tokenizer = AutoTokenizer.from_pretrained(model, device_map="auto", use_fast=False)
# self.pipe = AutoModelForCausalLM.from_pretrained(model, device_map="auto", torch_dtype=torch.float16)
elif self.model.lower() in ["llama-13b", "llama2-13b", 'llama2-13b-chat', 'llama2-7b', 'llama2-7b-chat']:
from transformers import LlamaForCausalLM, LlamaTokenizer
model_dir = os.path.join(self.args.model_dir, self.model)
self.tokenizer = LlamaTokenizer.from_pretrained(
model_dir, device_map="auto")
self.pipe = LlamaForCausalLM.from_pretrained(
model_dir, device_map="auto", torch_dtype=torch.float16)
elif self.model.lower() in ["vicuna-13b", "vicuna-13b-v1.3"]:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_dir = os.path.join(self.args.model_dir, self.model)
self.tokenizer = AutoTokenizer.from_pretrained(
model_dir, device_map="auto", use_fast=False)
self.pipe = AutoModelForCausalLM.from_pretrained(
model_dir, device_map="auto", torch_dtype=torch.float16)
elif self.model == "google/flan-ul2":
from transformers import T5ForConditionalGeneration, AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model)
self.pipe = T5ForConditionalGeneration.from_pretrained(
self.model, torch_dtype=torch.bfloat16, device_map="auto")
elif self.model == "tiiuae/falcon-40b-instruct":
from transformers import AutoTokenizer, AutoModelForCausalLM
self.tokenizer = AutoTokenizer.from_pretrained(self.model)
self.pipe = AutoModelForCausalLM.from_pretrained(
self.model, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto",)
elif self.model == "cerebras/Cerebras-GPT-13B":
from transformers import AutoTokenizer, AutoModelForCausalLM
self.tokenizer = AutoTokenizer.from_pretrained(
self.model, device_map="auto")
self.pipe = AutoModelForCausalLM.from_pretrained(
self.model, device_map="auto", torch_dtype=torch.float16)
elif self.model == "databricks/dolly-v1-6b":
from transformers import AutoModelForCausalLM, AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
"databricks/dolly-v1-6b", device_map="auto", padding_side="left")
self.pipe = AutoModelForCausalLM.from_pretrained(
"databricks/dolly-v1-6b", device_map="auto", torch_dtype=torch.float16)
else:
raise NotImplementedError("The model is not implemented!")
def process_input(self, prompt, raw_data):
if self.args.dataset in ["cola", "sst2", "mrpc", "qqp", "mnli", "qnli", "rte", "wnli"]:
return self._process_cls_input(prompt, raw_data)
elif self.args.dataset == "mmlu":
return self._process_qa_input(prompt, raw_data)
elif self.args.dataset == "squad_v2":
return self._process_squad_v2_input(prompt, raw_data)
elif self.args.dataset in ['iwslt', 'un_multi']:
return self._process_trans_input(prompt, raw_data)
elif self.args.dataset == 'math':
return self._process_math_input(prompt, raw_data)
elif self.args.dataset == 'bool_logic':
return self._process_bool_logic_input(prompt, raw_data)
elif self.args.dataset == 'valid_parentheses':
return self._process_valid_parentheses_input(prompt, raw_data)
else:
raise NotImplementedError("The dataset is not implemented!")
def process_pred(self, pred):
if self.args.dataset in ["cola", "sst2", "mrpc", "qqp", "mnli", "qnli", "rte", "wnli"]:
return self._process_cls_pred(pred)
elif self.args.dataset == "mmlu":
return self._process_qa_pred(pred)
elif self.args.dataset == "squad_v2":
return self._process_squad_v2_pred(pred)
elif self.args.dataset in ['iwslt', 'un_multi']:
return self._process_trans_pred(pred)
elif self.args.dataset == 'math':
return self._process_math_pred(pred)
elif self.args.dataset == 'bool_logic':
return self._process_bool_logic_pred(pred)
elif self.args.dataset == 'valid_parentheses':
return self._process_valid_parentheses_pred(pred)
else:
raise NotImplementedError("The dataset is not implemented!")
def eval(self, preds, gts):
if self.args.dataset in ["cola", "sst2", "mrpc", "qqp", "mnli", "qnli", "rte", "wnli", "mmlu", "bool_logic", "valid_parentheses"]:
if self.args.dataset == "mmlu":
preds = [pred.lower() for pred in preds]
gts = [gt.lower() for gt in gts]
if not isinstance(preds, list):
preds = [preds]
gts = [gts]
return sum(a == b for a, b in zip(preds, gts)) / len(preds)
elif self.args.dataset == "squad_v2":
from metrics.squad_v2.squad_v2 import SquadV2
metric = SquadV2()
model_output = []
for id, pred in zip(gts, preds):
if pred == "unanswerable":
no_ans_prob = 1
pred = ""
else:
no_ans_prob = 0
model_output.append(
{"id": id, "prediction_text": pred, "no_answer_probability": no_ans_prob})
references = self.args.data.get_reference()
score = metric.compute(
predictions=model_output, references=references)
return score["f1"] / 100
elif self.args.dataset in ['iwslt', 'un_multi']:
from metrics.bleu.bleu import Bleu
metric = Bleu()
results = metric.compute(predictions=preds, references=gts)
# it need to /100 to get the proper bleu score (in alignment with other dataset, e.g., glue)
return results['bleu'] / 100
elif self.args.dataset == 'math':
processed_preds = []
processed_gts = []
for pred, gt in zip(preds, gts):
if pred.lower() == "yes":
pred = "True"
elif pred.lower() == "no":
pred = "False"
gt = str(gt).lower()
processed_preds.append(pred.lower())
processed_gts.append(gt.lower())
acc = sum(a == b for a, b in zip(processed_preds,
processed_gts)) / len(processed_gts)
return acc
else:
raise NotImplementedError(
"Eval this dataset {self.args.dataset} is not implemented!")
def predict(self, prompt=None):
assert self.args.data is not None, "Please load data first!"
if self.model in ["chatgpt", "gpt4"]:
results = self.predict_by_openai_api(self.model, prompt)
else:
results = self.predict_by_local_inference(self.model, prompt)
return results
def predict_by_openai_api(self, model, prompt):
data_len = len(self.args.data)
if data_len > 1000:
data_len = 1000
score = 0
check_correctness = 100
preds = []
gts = []
for idx in tqdm(range(data_len)):
raw_data = self.args.data.get_content_by_idx(
idx, self.args.dataset)
input_text, gt = self.process_input(prompt, raw_data)
raw_pred = self.call_openai_api(model, input_text)
pred = self.process_pred(raw_pred)
preds.append(pred)
gts.append(gt)
if check_correctness > 0:
self.args.logger.info("gt: {}".format(gt))
self.args.logger.info("Pred: {}".format(pred))
self.args.logger.info("sentence: {}".format(input_text))
check_correctness -= 1
score = self.eval(preds, gts)
return score
def predict_by_local_inference(self, model, prompt):
data_len = len(self.args.data)
if data_len > 1000:
data_len = 1000
score = 0
check_correctness = 100
preds = []
gts = []
for idx in tqdm(range(data_len)):
raw_data = self.args.data.get_content_by_idx(
idx, self.args.dataset)
input_text, gt = self.process_input(prompt, raw_data)
raw_pred = self.pred_by_generation(input_text, model)
pred = self.process_pred(raw_pred)
preds.append(pred)
gts.append(gt)
if check_correctness > 0:
self.args.logger.info("gt: {}".format(gt))
self.args.logger.info("Pred: {}".format(pred))
self.args.logger.info("sentence: {}".format(input_text))
check_correctness -= 1
score = self.eval(preds, gts)
return score
def call_openai_api(self, model, prompt):
import openai
from config import OPENAI_API
openai.api_key = OPENAI_API
if model in ['chatgpt']:
response = openai.Completion.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt,
max_tokens=20,
temperature=0
)
result = response['choices'][0]['text']
else:
response = openai.ChatCompletion.create(
model='gpt-4-0613',
messages=[
{"role": "user", "content": prompt},
]
)
result = response['choices'][0]['message']['content']
return result
def pred_by_generation(self, input_text, model):
out = 'error!'
input_ids = self.tokenizer(
input_text, return_tensors="pt").input_ids.to("cuda")
if 't5' in model or 'ul2' in model:
outputs = self.pipe.generate(
input_ids, max_length=self.args.generate_len, early_stopping=True)
out = self.tokenizer.decode(outputs[0])
elif model == 'EleutherAI/gpt-neox-20b':
outputs = self.pipe.generate(input_ids,
# do_sample=True,
temperature=0.00001,
# max_length=50,
max_new_tokens=self.args.generate_len,
early_stopping=True,
pad_token_id=self.tokenizer.eos_token_id)
out = self.tokenizer.decode(outputs[0])
elif model == "facebook/opt-66b":
outputs = self.pipe.generate(input_ids)
out = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
elif model in ["llama-13b", "llama2-13b", 'llama2-13b-chat', "vicuna-13b", "vicuna-13b-v1.3", "llama2-7b", "llama2-7b-chat"]:
outputs = self.pipe.generate(input_ids,
temperature=0,
max_new_tokens=self.args.generate_len,
early_stopping=True)
out = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
elif model in ['databricks/dolly-v1-6b', 'cerebras/Cerebras-GPT-13B']:
outputs = self.pipe.generate(input_ids,
temperature=0,
max_new_tokens=self.args.generate_len,
pad_token_id=self.tokenizer.eos_token_id,
early_stopping=True)
out = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
elif model == "tiiuae/falcon-40b-instruct":
outputs = self.pipe.generate(input_ids,
temperature=0,
max_new_tokens=self.args.generate_len,
pad_token_id=self.tokenizer.eos_token_id,
early_stopping=True)
out = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return out
def _process_valid_parentheses_input(self, prompt, raw_data):
question, label = raw_data['question'], raw_data['answer']
input_text = prompt + '\n'
if self.args.shot > 0:
input_text += "\n" + \
self.args.data.get_few_shot_examples(raw_data['task'])
input_text += ("Question: " + question + '\nAnswer: ')
return input_text, label
def _process_bool_logic_input(self, prompt, raw_data):
question, label = raw_data['question'], raw_data['answer']
input_text = prompt + '\n'
if self.args.shot > 0:
input_text += "\n" + \
self.args.data.get_few_shot_examples(raw_data['task'])
input_text += ("Question: " + question + '\nAnswer: ')
return input_text, label
def _process_math_input(self, prompt, raw_data):
from config import MATH_QUESTION_TYPES
question_type, question, label = MATH_QUESTION_TYPES[raw_data['task']
], raw_data['question'], raw_data['answer']
input_text = prompt.format(question_type) + '\n'
if self.args.shot > 0:
input_text += "\n" + \
self.args.data.get_few_shot_examples(raw_data['task'])
input_text += ("Question: " + question + '\nAnswer: ')
return input_text, label
def _process_trans_input(self, prompt, raw_data):
from config import LANGUAGES
source, target, task = raw_data['source'], raw_data['target'], raw_data['task']
src_lang, des_lang = task.split('-')
input_text = prompt.format(
LANGUAGES[src_lang], LANGUAGES[des_lang]) + '\n'
if self.args.shot > 0:
input_text += "\n"+self.args.data.get_few_shot_examples(task)
input_text += (source + '\nAnswer: ')
return input_text, target
def _process_squad_v2_input(self, prompt, raw_data):
id, content = raw_data["id"], raw_data["content"]
input_text = prompt
if self.args.shot > 0:
input_text += "\n" + \
self.args.data.get_few_shot_examples(self.args.dataset)
input_text += (content + "Answer: ")
return input_text, id
def _process_qa_input(self, prompt, raw_data):
task, content = raw_data["task"], raw_data["content"]
label = raw_data["label"]
input_text = prompt.format(task) + "\n"
if self.args.shot > 0:
input_text += "\n" + \
self.args.data.get_few_shot_examples(task.replace(" ", "_"))
input_text += content + "\nAnswer: "
return input_text, label
def _process_cls_input(self, prompt, raw_data):
content = raw_data["content"]
label = raw_data["label"]
input_text = prompt
if self.args.shot > 0:
few_shot_examples = self.args.data.get_few_shot_examples(
self.args.dataset)
input_text += "\n"+few_shot_examples
if self.args.dataset == "sst2" or self.args.dataset == "cola":
input_text += "Sentence: "
input_text += (content + ' Answer: ')
return input_text, label
def _process_bool_logic_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
return pred
def _process_valid_parentheses_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
return pred
def _process_math_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
return pred
def _process_trans_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
return pred
def _process_squad_v2_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
return pred
def _process_cls_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
pred = pred.split(" ")[-1]
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
if pred in LABEL_SET[self.args.dataset]:
pred = LABEL_TO_ID[self.args.dataset][pred]
else:
self.args.logger.warn(
"The original label : '{}'.".format(raw_pred))
self.args.logger.warn(
"The predicted label: '{}' is not in label set.".format(pred))
pred = -1
return pred
def _process_qa_pred(self, raw_pred):
pred = raw_pred.lower()
pred = pred.replace("<pad>", "")
pred = pred.replace("</s>", "")
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
pred = pred.split(" ")[-1]
pred = pred.strip(",._\"\'-+=!?()&^%$#@:\\|\{\}[]<>/`\n\t\r\v\f ")
if pred not in LABEL_SET[self.args.dataset]:
self.args.logger.warn(
"The original label : '{}'.".format(raw_pred))
self.args.logger.warn(
"The predicted label: '{}' is not in label set.".format(pred))
pred = 'no_answer'
return pred