-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmfa_train_mnist.py
45 lines (38 loc) · 1.98 KB
/
mfa_train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import sys
import numpy as np
import argparse
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
from matplotlib import pyplot as plt
from utils import image_batch_provider
from utils import mfa_sgd_training
import mfa_utils
import mfa
def main(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', default='../../Datasets/MNIST')
parser.add_argument('--output_dir', help='Parent directory for storing all trained models', default='./restuls')
parser.add_argument('--num_components', help='Number of (root level) mixture components', default=150)
parser.add_argument('--latent_dimension', help='Dimension of input factors z', default=5)
args = parser.parse_args()
image_shape = (28, 28, 1)
batch_size = 512
image_provider = image_batch_provider.ImageBatchProvider(args.dataset_dir,
flatten=True,
batch_size=batch_size,
mirror=False)
output_folder = os.path.join(args.output_dir, 'mnist_mfa_{}c_{}l'.format(args.num_components, args.latent_dimension))
print('Running MFA Teaining. Output folder is', output_folder)
os.makedirs(output_folder, exist_ok=True)
mfa_sgd_training.train(num_components=args.num_components, latent_dimension=args.latent_dimension,
out_folder=output_folder, image_shape=image_shape, init_method='km',
init_whiten=False, image_provider=image_provider, batch_size=batch_size,
test_size=batch_size*20, learning_rate=2e-5, max_iters=6000)
print('Done')
# plt.show()
if __name__ == "__main__":
main(sys.argv)