Skip to content

Latest commit

 

History

History
34 lines (30 loc) · 2.08 KB

2_18_embeddings.md

File metadata and controls

34 lines (30 loc) · 2.08 KB

Embeddings

The feature package embeddings takes document embeddings into account. This feature package is based on embeddings provided by flair (Akbik, Alan; Bergmann, Tanja; Blythe, Duncan; Rasul, Kashif; Schweter, Stefan and Vollgraf, Roland. 2019: FLAIR: An easy-to-use framework for state-of-the-art NLP. NAACL 2019, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), 54-59.).

Chooseable parameters are:

  • name : str
    • name of the feature package (defaults to embeddings)
  • lang : str
    • ISO-code of language to use
  • doc_embeddings : {'DocumentPoolEmbeddings', 'TransformerDocumentEmbeddings', 'SentenceTransformerDocumentEmbeddings'}
    • document embeddings from flair, default is 'DocumentPoolEmbeddings'
    • choose from flair's DocumentPoolEmbeddings, TransformerDocumentEmbeddings, SentenceTransformerDocumentEmbeddings
  • embeddings : dict, optional
    • token embeddings (can be stacked too), default loads Classic Word Embeddings for the chosen language
    • choose from flair's (stacked) word embeddings
  • config : dict, optional
    • configuration for DocumentPoolEmbeddings, default keeps flair's defaults (fine_tune_mode = linear, pooling = first)
    • see documentation

Configuration example:

    {
        "feature_package": "embeddings",
        "embeddings": {
                       "TransformerWordEmbeddings":{
                                                    "model": "bert-base-uncased",
                                                    "config": {
                                                              "layers": "all"
                                                              }
                                                   } 
                      }
    }}