-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCheckLang.idr
175 lines (151 loc) · 6.21 KB
/
CheckLang.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
module CheckLang
import Data.Vect
import Lang
import RawLang
import NatCmp
import Bounded
checkStk : RStackInst -> (stkIn : Nat) -> (stkOut ** Instr stkIn stkOut l)
checkStk (RPUSH x) n = (_ ** Stk (PUSH x))
checkStk RDUP Z = (_ ** Check (S Z) (Stk DUP))
checkStk RDUP (S k) = (_ ** Stk DUP)
checkStk {l} (RCOPY n) m with (cmp n m)
checkStk (RCOPY n) (n + (S k)) | CmpLT _ = (_ ** Stk (COPY n))
checkStk {l} (RCOPY n) n | CmpEQ
= let val = COPY {lbls = l} {k = Z} n in
(S (S n) ** Check (S n) (Stk ?copyStk))
checkStk {l} (RCOPY (m + (S k))) m | CmpGT _
= let val = COPY {lbls = l} {k = Z} (m + (S k)) in
(S (S (m + (S k))) ** Check (S (m + (S k))) (Stk ?copyStkGT))
checkStk RSWAP (S (S k)) = (_ ** Stk SWAP)
checkStk RSWAP n = (_ ** Check (S (S Z)) (Stk SWAP))
checkStk RDISCARD (S k) = (_ ** Stk DISCARD)
checkStk RDISCARD n = (_ ** Check (S Z) (Stk DISCARD))
checkStk {l} (RSLIDE n) m with (cmp n m)
checkStk {l} (RSLIDE n) (n + (S k)) | CmpLT _
= let val = SLIDE {lbls=l} {k} n in
(S k ** Stk ?slideStkLT)
checkStk {l} (RSLIDE n) n | CmpEQ
= let val = SLIDE {lbls=l} {k = Z} n in
(1 ** Check (S n) (Stk ?slideStkEQ))
checkStk {l} (RSLIDE (m + (S k))) m | CmpGT _
= let val = SLIDE {lbls=l} {k = Z} (m + (S k)) in
(1 ** Check (S (m + (S k))) (Stk ?slideStkGT))
checkArith : RArithInst -> (stkIn : Nat) -> (stkOut ** Instr stkIn stkOut l)
checkArith RADD (S (S k)) = (_ ** Ar ADD)
checkArith RSUB (S (S k)) = (_ ** Ar SUB)
checkArith RMUL (S (S k)) = (_ ** Ar MUL)
checkArith RDIV (S (S k)) = (_ ** Ar DIV)
checkArith RMOD (S (S k)) = (_ ** Ar MOD)
checkArith RADD n = (1 ** Check 2 (Ar ADD))
checkArith RSUB n = (1 ** Check 2 (Ar SUB))
checkArith RMUL n = (1 ** Check 2 (Ar MUL))
checkArith RDIV n = (1 ** Check 2 (Ar DIV))
checkArith RMOD n = (1 ** Check 2 (Ar MOD))
checkHeap : RHeapInst -> (stkIn : Nat) -> (stkOut ** Instr stkIn stkOut l)
checkHeap RSTORE (S (S k)) = (_ ** Hp STORE)
checkHeap RSTORE n = (_ ** Check 2 (Hp STORE))
checkHeap RRETRIEVE (S k) = (_ ** Hp RETRIEVE)
checkHeap RRETRIEVE n = (_ ** Check 1 (Hp RETRIEVE))
findLoc : Eq a => a -> Vect n a -> Maybe (Bounded n)
findLoc x [] = Nothing
findLoc x (y :: ys)
= if x == y then Just (Bound Z)
else case findLoc x ys of
Just b => Just (inc b)
Nothing => Nothing
checkFlow : Vect lbls Label -> RFlowInst -> (stkIn : Nat) ->
Maybe (stkOut ** Instr stkIn stkOut lbls)
checkFlow ls (RLABEL l) s = do bindex <- findLoc l ls
return (_ ** Fl (LABEL bindex))
checkFlow ls (RCALL l) s = do bindex <- findLoc l ls
return (_ ** Fl (CALL bindex))
checkFlow ls (RJUMP l) s = do bindex <- findLoc l ls
return (_ ** Fl (JUMP bindex))
checkFlow ls (RJZ l) (S s) = do bindex <- findLoc l ls
return (_ ** Fl (JZ bindex))
checkFlow ls (RJZ l) s = do bindex <- findLoc l ls
return (_ ** Check 1 (Fl (JZ bindex)))
checkFlow ls (RJNEG l) (S s) = do bindex <- findLoc l ls
return (_ ** Fl (JNEG bindex))
checkFlow ls (RJNEG l) s = do bindex <- findLoc l ls
return (_ ** Check 1 (Fl (JNEG bindex)))
checkFlow ls RRETURN s = Just (_ ** Fl RETURN)
checkFlow ls REND s = Just (_ ** Fl END)
checkIO : RIOInst -> (stkIn : Nat) -> (stkOut ** Instr stkIn stkOut l)
checkIO ROUTPUT (S k) = (_ ** IOi OUTPUT)
checkIO ROUTPUTNUM (S k) = (_ ** IOi OUTPUTNUM)
checkIO ROUTPUT n = (_ ** Check 1 (IOi OUTPUT))
checkIO ROUTPUTNUM n = (_ ** Check 1 (IOi OUTPUTNUM))
checkIO RREADCHAR (S k) = (_ ** IOi READCHAR)
checkIO RREADNUM (S k) = (_ ** IOi READNUM)
checkIO RREADCHAR n = (_ ** Check 1 (IOi READCHAR))
checkIO RREADNUM n = (_ ** Check 1 (IOi READNUM))
checkI : Vect lbls Label -> RInstr -> (stkIn : Nat) ->
Maybe (stkOut ** Instr stkIn stkOut lbls)
checkI ls (RStk s) stkIn = Just $ checkStk s stkIn
checkI ls (RAr s) stkIn = Just $ checkArith s stkIn
checkI ls (RHp s) stkIn = Just $ checkHeap s stkIn
checkI ls (RFl s) stkIn = checkFlow ls s stkIn
checkI ls (RIOi s) stkIn = Just $ checkIO s stkIn
mkLabels : List RInstr -> (n ** Vect n Label)
mkLabels [] = (_ ** [])
-- ignore duplicate labels - behviour is undefined
mkLabels (RFl (RLABEL x) :: xs) = case mkLabels xs of
(_ ** ls) => (_ ** x :: ls)
mkLabels (_ :: xs) = mkLabels xs
check' : Vect lbls Label -> List RInstr -> (stkIn : Nat) ->
Maybe (stkOut ** Prog stkIn stkOut lbls)
check' ls [] stk = return (_ ** [])
check' ls (i :: is) stk
= do (stk' ** i') <- checkI ls i stk
(stk'' ** is') <- check' ls is stk'
return (stk'' ** i' :: is')
findLabels : Prog x y lbls -> LabelCache lbls
findLabels {lbls} prog = updateLabels blank prog
where
blank : Vect n (out ** Prog Z out lbls)
blank {n = Z} = []
blank {n = S k} = (_ ** []) :: blank
updateLabels : LabelCache lbls -> Prog x y lbls -> LabelCache lbls
updateLabels ls [] = ls
updateLabels ls (Fl (LABEL x) :: prog)
= updateLabels (update x (_ ** prog) ls) prog
updateLabels ls (_ :: prog) = updateLabels ls prog
check : List RInstr -> Maybe (l ** Machine l)
check raw = do let (_ ** lbls) = mkLabels raw
(_ ** prog) <- check' lbls raw Z
let lblcode = findLabels prog
return (_ ** MkMachine prog lblcode [] [] [])
---------- Proofs ----------
CheckLang.slideStkGT = proof {
compute;
intro lbls,m,k;
rewrite plusCommutative Z (plus m (S k));
intros;
trivial;
}
CheckLang.slideStkEQ = proof
intro lbls,n
rewrite plusCommutative Z n
intros
trivial
CheckLang.slideStkLT = proof {
intro lbls,n,k;
rewrite plusCommutative (S k) n;
rewrite plusCommutative k n;
intros;
trivial;
}
CheckLang.copyStkGT = proof {
intro lbls, m, k;
compute;
rewrite plusCommutative (S Z) (plus m (S k));
intros;
trivial;
}
CheckLang.copyStk = proof {
intro lbls, n;
rewrite plusCommutative (S Z) n;
intros;
trivial;
}