This repository was archived by the owner on Jan 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
270 lines (201 loc) · 7.99 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from turtle import pos
from typing import Tuple
import networkx as nx
import random as rand
from pprint import pprint
import ast
import time
from collections import Counter
Point = Tuple[int, int]
class Graph:
def __init__(self):
self.nodes = dict()
self.edges = dict()
self.solution = dict()
@property
def size(self):
return len(self.nodes)
def add_node(self, node: Point, weight: int):
self.nodes[node] = weight
return self
def add_edge(self, node1: Point, node2: Point):
self.edges.setdefault(node1, []).append(node2) # add edge node1 -> node2
return self
def read_graph(self, filename: str, seed: int):
self.nodes.clear()
self.edges.clear()
rand.seed(seed)
try:
file = open(filename, "r")
except FileNotFoundError:
print(f"Error! File not found!")
exit(1)
while file:
file.readline()
file.readline()
nodes_number = int(file.readline())
edges_number = int(file.readline())
nodes = dict()
for n in range(nodes_number):
while True:
# generate random coordinates
x, y = (rand.randint(1, nodes_number * 2), rand.randint(1, nodes_number * 2))
if not (x, y) in self.nodes: break # continue if point exists
nodes[n] = [(x,y), rand.randint(1, 10)]
edges = dict()
for _ in range(edges_number):
node1, node2 = [int(w) for w in file.readline().split()[:2]]
if node1 not in edges.keys():
edges.setdefault(node1, []).append(node2)
else:
edges[node1].append(node2)
break
for n in nodes:
self.add_node(nodes[n][0], nodes[n][1]) # {node: weight}
for e in edges.keys():
for n in edges[e]: self.add_edge(nodes[e][0], nodes[n][0])
return self
def random_graph(self, size: int, seed: int, edge_probability: float = 0.5):
self.nodes.clear()
self.edges.clear()
rand.seed(seed)
for _ in range(size):
while True:
x, y = (rand.randint(1, 20), rand.randint(1, 20)) # generate
# random
# coordinates
if not (x, y) in self.nodes: break # continue if point exists
self.add_node((x,y), rand.randint(1, 10))
#print(f'nodes: ', self.nodes)
for n1 in self.nodes:
for n2 in self.nodes:
if rand.random() < edge_probability and n1 != n2:
self.add_edge(n1, n2) # generate edges until given max
#print(f'edges: ', self.edges)
return self
def find_minimum_weighted_closure(self, seed: int, max_solutions: int, max_time: int, edge_probability = float):
self.solution, iterations, execution_time, solutions_number = \
RandomizedAlgorithm(
seed,
self.nodes,
self.edges,
max_solutions,
max_time,
edge_probability
).calculate()
return self.solution, iterations, execution_time, solutions_number
def draw_graph(self, ax = None):
graph_drawer = GraphDrawer()
graph_drawer.draw_graph(self.nodes, self.edges, self.solution)
class GraphDrawer:
def draw_graph(
self,
nodes: dict(),
edges: dict(),
solution: dict() = None,
ax = None
):
graph = nx.DiGraph()
for key in edges.keys():
for value in edges[key]:
graph.add_edge(key, value)
positions = {x: x for x in nodes}
nx.draw(
graph,
pos = positions,
nodelist = nodes,
edge_color = '#000000',
node_size = 500,
node_color = '#9999FF',
width = 1,
ax = ax,
arrows = True,
arrowsize = 10,
arrowstyle='->'
)
nx.draw_networkx_nodes(
graph,
pos = positions,
nodelist = solution,
node_size = 500,
node_color = '#99FF99',
ax = ax)
nx.draw_networkx_labels(
graph,
pos = positions,
labels = nodes,
font_color = 'black',
font_size = 8
)
class RandomizedAlgorithm:
global compute_subsets
def __init__(self, seed: int, nodes: dict(), edges: dict(), max_solutions, max_time, edge_probability):
self.seed = seed
self.nodes = nodes
self.edges = edges
self.max_solutions = max_solutions
self.max_time = max_time
self.size = len(nodes)
self.edge_probability = edge_probability
def compute_subsets(self, lst):
l = len(lst)
powerset = []
for i in range(1 << l):
powerset.append([lst[j] for j in range(l) if (i & (1 << j))])
subsets = []
for subset in powerset:
i = 0
for node in subset:
if node in self.edges:
for e in self.edges[node]:
# if node has at least one edge to another node in the subset
if e in subset:
i += 1
break
else: # if node has no edge to another node
i += 1
if [node] not in subsets:
subsets.append([node])
if i == len(subset): subsets.append(subset)
return subsets # only subsets that in fact have edges between the nodes
def calculate(self):
subsets = compute_subsets(self, [n for n in self.nodes.keys()])
iterations = 0
start = time.time()
# maximum number of candidate solutions
subsets = rand.sample(subsets, round(self.max_solutions * len(subsets)))
# maximum computation time, given by the max theoretical number of
# computations, multiplied by a % max_time, e.g.,
# if max_time = 0.2 => 20% of the max computations ≈ 20% of the max
# computation time
if self.max_time:
max_iterations = (len(subsets) * round(self.size / 2) * round(self.size * self.edge_probability)) * self.max_time
closures = []
for possible_closure in subsets:
if self.max_time and iterations >= max_iterations: break
out_edges = []
for node in possible_closure:
if node in self.edges.keys():
# node has no edge to a node outside the subset
#out_edges.extend(x for x in self.edges[node]\
# if x not in out_edges\
# and x not in possible_closure)
for x in self.edges[node]:
iterations += 1
if x not in out_edges and x not in possible_closure:
out_edges.extend([x])
# if no edges leave the possible closure and its value != None,
# then this subset is a closure
if not out_edges and possible_closure:
closures.append(possible_closure)
closures_weights = dict()
for closure in closures:
closures_weights[str(closure)] = sum([self.nodes[node] \
for node in closure])
if closures_weights:
minimum_weighted_closure = ast.literal_eval(
min(closures_weights, key = closures_weights.get)
)
else: minimum_weighted_closure = None
end = time.time()
return minimum_weighted_closure, iterations, end - start, len(closures)